Data Lakes: Discovery and Debiasing

Fatemeh Nargesian, University of Rochester
VLDB Summer School 2023 - Cluj-Napoca

- Al is ubiquitous.
- Data-centric AI: focus from big data to good data.
- Open data repositories and data markets have become prevalent.

Data repositories as first-class citizens.

- Sources: open governments, web pages, enterprises, and data markets
- Large number of datasets
- Disconnected and heterogeneous datasets
- Topics vary

\bigcirc			
3,562	35,675	51,363	247,074
Romania	Canada	UK	USA

50,820,165

Search datasets...	Order by:
Popular	

246,074 datasets found

FDIC Failed Bank List $\mid \sim \sim 1883$ recent views
Federal Deposit Insurance Corporation - The FDIC is often appointed as receiver for failed banks. This list includes banks which have failed since October 1, 2000

- Improving governments
- Empowering citizens
- Solving big public problems

Map data © OpenStreet
 Tiles by Stamen Design

Topics

- Interesting computational problems

Local Government 17324
Department of Education - The National Student Loan Data System (NSLDS) is the
Climate 447
Older Adults... 90
Energy 21

Topic Categories
 of the Higher..

U.S. Chronic Disease Indicators (CDI) ${ }^{\sim} 1144$ recent views
U.S. Department of Health \& Human Services - CDC's Division of Population Health provides cross-cutting set of 124 indicators that were developed by consensus and that

Goal: query answering and dataset donstruction:

- Distribution and representativeness: model fairness and accuracy
- Efficient, scalable, cost-effective solutions

About me

- Assistant Professor of CS, University of Rochester
- Research: data for AI and scientific time-series management

- Education
- Undergrad in computer engineering and MSc. in AI, Tehran, Iran
- PhD -> MSc. in CS, University of Ottawa
- PhD in CS, University of Toronto
- Dataset discovery and integration; autoML
- Worked at clinical informatics research group of McGill University; IBM research internships

LOGISTICS

- Many additional references in the slides
- Questions any time during the talk
- The material based on two tutorials:

Data Lake Management: Challenges and Opportunities,
F. Nargesian, E. Zhu+, VLDB, 2019.

Responsible Data Integration: Next-generation Challenges,
F. Nargesian, A. Asudeh, H. V. Jagadish, SIGMOD 2022 and WSDM 2023.

Outline

DATASET DISCOVERY:
Syntactic and Semantic Join Search, Feature and Slice Discovery

QUERY ANSWERING:
Random Sampling over Union of Joins

FAIRNESS-AWARE DATA ACQUISITION:
Data Distribution Tailoring

DATASET DISCOVERY

| search datasets... |
| :--- | :--- | :--- |

246,074 datasets found

FDIC Failed Bank List $\operatorname{L\sim } 1883$ recent views
Federal Deposit Insurance Corporation - The FDIC is often appointed as receiver for failed banks. This list includes banks which have failed since October 1, 2000

CSV HTML

Electric Vehicle Population Data $1 \sim \sim 1605$ recent views

State of Washington - This dataset shows the Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) that are currently registered through Washington State Department...

CSV RDF JSON XML

National Student Loan Data System L 1175 recent views
Department of Education - The National Student Loan Data System (NSLDS) is the national database of information about loans and grants awarded to students under Title IV of the Higher...

U.S. Chronic Disease Indicators (CDI) $\omega^{\sim} 1144$ recent views
U.S. Department of Health \& Human Services - CDC's Division of Population Health provides cross-cutting set of 124 indicators that were developed by consensus and that allows states and territories and large...

84-1/3日R2u
$2|||\mid \geq 0$
nema - con
am $=$ M M
olute values ${ }^{2}$
$4 \times \pi \times 12 \quad 4.8-6 \gg$

(1/2) 102
\square

A \square

Geo	Date

uel Type Pop
Avg. Age
SELECT ??
FROM ?? JOIN ??
ON ?? = ??
UNION
SELECT ?? UNION

Union of Conjunctive Queries

FROM ?? JOIN ??

Romania

SEARCH BY JoIN

Geo	Date	Fuel	ktCO2	Sector	...
Barnet	2015	electricity	130	Domestic	
City of London	2015	diesel	200	Transport	
Camden	2014	coal	125	Domestic	

column
SELECT ??
FROM emission e JOIN ??

emission

Geo	Date	Fuel	ktCO2	Sector	\ldots
Barnet	2015	electricity	130	Domestic	
City of London	2015	diesel	200	Transport	
Camden	2014	coal	125	Domestic	
\ldots	\ldots	...	\ldots	...	

SELECT
FROM emission e JOIN citydata d ON e.Geo = d.Area

Geo	Date	Fuel	ktCO2	Sector	Pop	Avg_age	F.Unemp	Unemp	\ldots
Camden	2014	Coal	125	Domestic	142500	36.4	-	-	
City of London	2015	diesel	200	Transport	242500	43.2	62.9	4	
Barnet	\ldots	\ldots	\ldots	\ldots	NULL	NULL	NULL	NULL	
\ldots	\ldots	\ldots	\ldots	\ldots					

SYNTACTIC JOIN DISCOVERY

LSH Ensemble: Internet-Scale Domain Search,

E. Zhu, F. Nargesian, K. Pu, R. J. Miller, VLDB, 2016.

JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data
Lakes, E. Zhu, D. Dong, F. Nargesian, PU, Miller, SIGMOD 2019.

Joinability Measure

- Columns as sets

Overlap $(\mathrm{Q}, \mathrm{X})=|Q \cap X|$
Containment $(\mathrm{Q}, \mathrm{X})=\frac{|Q \cap X|}{|X|}$
$\operatorname{Jaccard}(\mathrm{Q}, \mathrm{X})=\frac{|Q \cap X|}{|Q \cup X|}$

- Columns as multisets
- Related work [Bessa+POD'23, Santos+ICDE'22, Santos+SIGMOD'21, Fernandez+ICDE'19]

Jaccard vs. Containment

- Suppose there are the following two columns in the repository

Provinces $=\{$ Alberta, Ontario, Manitoba $\}$
Locations = \{lllinois, Chicago, New York, Nova Scotia, Halifax, California, San Francisco, Seattle, Washington, Ontario, Toronto\}

- Consider the following query columns

$$
Q=\{\text { Ontario, Toronto }\}
$$

- Top-1 joinable columns based on Jaccard? Top-1 joinable columns based on containment?
$\operatorname{Jaccard}(Q, P)=1 / 4, \operatorname{Containment}(Q, P)=1 / 2$
$\operatorname{Jaccard}(Q, L)=2 / 11$, Containment $(Q, P)=1$
Containment $(\mathrm{Q}, \mathrm{X})=\frac{|Q \cap X|}{|X|}$
Jaccard is biased towards smaller columns

$$
\operatorname{Jaccard}(\mathrm{Q}, \mathrm{X})=\frac{|Q \cap X|}{|Q \cup X|}
$$

DATASET DISCOVERY

- Threshold-based search: Given a query Q and a joinability measure J, find columns X s.t. $J(Q, X)>=t^{*}$.
- Top-k search: Given a query Q and a joinability measure J , find k columns X s.t. $J(Q, X)>=t^{*}$.

Threshold-based Containment Search

- Problem. Given a query Q and containment threshold t*, find columns X s.t. containment $(\mathrm{Q}, \mathrm{X})>=\mathrm{t}^{*}$.

- Existing technique for containment search results in low recall for skewed column size distributions [SrivastavaLi2015].

LSH ENSEMBLE

- Deals with data volume and skew!
- First phase: columns are partitioned based on the distribution of column cardinality.
- Second phase: construct a MinHash LSH index for each partition and parallel search
- Accurate over columns whose sizes are skewed (e.g., power-law dist.)

Minhashing for Jaccard Nearest Neighbor Search

- MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.

Minhashing

- Key idea: "hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$
- Goal: Find a hash function $h(\cdot)$ such that:
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Hash cols into buckets. Expect that "most" pairs of near duplicate cols hash into the same bucket!

Minhashing

- Goal: Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Minhashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Minhashing - EXAMPLE

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Minhashing - EXAMPLE

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Minhashing - EXAMPLE

Permutation π Input matrix (Shingles \times Documents)

2			
3			
7			
6			
1			
5			
4	1 0 1	0	
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Minhashing - EXAMPLE

Minhashing - EXAMPLE

Minhashing - EXAMPLE

Minhashing - EXAMPLE

Minhashing Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
-Why?
- Let X be a col (set of shingles), $y \in X$ is a shingle

0	0
0	0
1	1
0	0
0	1
1	0

- Then: $\operatorname{Pr}[\pi(\mathrm{y})=\min (\pi(\mathrm{X}))]=1 /|X|$
- It is equally likely that any $y \in X$ is mapped to the min element
- Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
- Then either: $\pi(y)=\min \left(\pi\left(C_{1}\right)\right)$ if $y \in C_{1}$, or

$$
\pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
$$

- So the prob. that both are true is the prob. $y \in C_{1} \cap C_{2}$
- $\operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|=\operatorname{sim}\left(C_{1}, C_{2}\right)$

Four Types of Rows

- Given cols C_{1} and C_{2}, rows may be classified as:

	C_{1}	C_{2}
A	1	1
B	1	0
C	0	1
D	0	0

- $\mathrm{a}=\#$ rows of type A , etc.
- Note: $\operatorname{sim}\left(C_{1}, C_{2}\right)=a /(a+b+c)$
- Then: $\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Look down the cols C_{1} and C_{2} until we see a 1
- If it's a type-A row, then $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ If a type- B or type-C row, then not

Similarity of Signatures

- We know: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
- It can be shown that $h_{\pi}(C 1)=h_{\pi}(C 2)$ is an unbiased estimator of $\operatorname{sim}(C 1$, C2)
- An estimator is unbiased if its expected value is equal to the true value of the parameter.

Minhashing - EXAMPLE

Permutation π			Input matrix (Shingles x Documents)					Signature matrix M			
2	4	3	1	0	1	0		2	1	2	1
3	2	4	1	0	0	1		2	1	4	1
7	1	7	0	1	0	1		1	2	1	2
6	3	2	0	1	0	1	Similarities:				
1	6	6	0	1	0	1					
5	7	1	1	0	1	0	/Col	1-3	2-4		3-4
4	5	5	1	0	1	0	Sig/Sig	0.67	1.0		0

Minhashing - EXAMPLE

- Pick $K=100$ random permutations of the rows
- Think of $\operatorname{sig}(\mathrm{C})$ as a column vector
- $\operatorname{sig}(\mathrm{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(C)[i]=\min \left(\pi_{i}(C)\right)
$$

- Note: The sketch (signature) of document C is small $\sim 500 \mathrm{~K}$ bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Minhashing for Jaccard Nearest Neighbor Search

- MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
- Each column is represented with one or more minhash values.

minhash of set

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{minhash}\left(\mathrm{X}_{\mathrm{i}}\right)=\operatorname{minhash}\left(\mathrm{X}_{\mathrm{j}}\right)\right] \\
& =\operatorname{Jaccard}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)
\end{aligned}
$$

MINHASHING FOR JACCARD Nearest Neighbor Search

- MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
- Each column is represented with one or more minhash values.
signature: k minhash

10	13	17	10	34	10
12	11	2	4	6	7
1	12	9	7	5	90

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{minhash}\left(X_{i}\right)=\operatorname{minhash}\left(X_{\mathrm{j}}\right)\right] \\
& =\operatorname{Jaccard}\left(\mathrm{X}_{\mathrm{i}}, X_{\mathrm{j}}\right) \\
& \text { Jaccard }\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) \sim \\
& \text { \# colliding minhash } / \text { hash funcs. }
\end{aligned}
$$

SKETCHING

- MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
- Each column is represented with one or more minhash values.

LOCALITY SENSITIVE HASHING (LSH)

query Q and
Jaccard

- If we were to use Jaccard
threshold
- Similar sets: similar signatures [Broder97, Indyk98]
- Hash bands into buckets
- Columns hashed to same bands are potential candidates for joinable cols.

Threshold-based Containment Search

- Problem. Given a query Q and containment threshold t^{*}, find columns X s.t. containment $(\mathrm{Q}, \mathrm{X})>=\mathrm{t}^{*}$.

$$
\operatorname{containment}(Q, X)=\frac{|Q \cap X|}{|Q|}
$$

largest col. isicecounssatatition

INDEX A PARTITION

cols. X with
false positives

```
remove old and new
remove old and new
 cols. X with Containment \((\mathrm{Q}, \mathrm{X})>=\mathrm{t}^{*}\)
\(T_{\text {Containment }}=\)
query Q
each partition has its own threshold

\section*{Partitioning Scheme}

- Query cost is determined by the partition with the highest \# false positives.
\[
\Pi^{*}=\operatorname{argmin}\left(\max _{1<i<n} M_{i}\right)_{\# \text { false positives in partition } i}
\]
- Data partitioning as an optimization problem.
- The partitioning in which all \(M_{i}\) 's are the same.

\section*{Partitioning Scheme}

- Query cost is determined by the partition with the most \# false positives.
\[
\Pi^{*}=\operatorname{argmin}\left(\max _{1<i<n} M_{i}\right)_{\quad \text { \# false positives in partition i }}
\]
\[
\text { \# of columns in a partition } \quad M_{i} \leq N_{l_{i}, u_{i}} \cdot \frac{u_{i}-l_{i}+1}{2 u_{i}} \quad \text { assuming uniform dist. of sizes }
\]
- How to choose partition bounds I and u?

\section*{Optimal Partitioning}
- Exists an optimal partitioning for any data distribution.
- For power-law distributions, the optimal partitioning can be approximated using equi-depth.


\section*{Query Performance}
- On WDC Web Table: ~263 million columns
\begin{tabular}{|l|l|l|}
\hline Algorithm & Mean Query (sec) & Precision Before Pruning (t*=0.5) \\
\hline MinHash LSH & 45.13 & 0.27 \\
\hline LSH Ensemble (8) & 7.55 & 0.48 \\
\hline LSH Ensemble (16) & 4.26 & 0.53 \\
\hline LSH Ensemble (32) & 3.12 & 0.58 \\
\hline
\end{tabular}
- Speedup is due to
- fewer false positive columns to process (higher precision)
- parallelization

\section*{Search on Vectors}
- Hierarchical Navigable Small World (HNSW) for vector search

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs, Yu A. Malkov and D. A. Yashuin, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020.
- Practical and efficient index structure for a variety of distance measures

Billion-scale similarity search with GPUs, J. Johnson et al., IEEE Transactions on Big Data, 2019

\section*{Join and Dirty Data}
- Containment may become ineffective for joining data in the wild.
- Dirty and semantically diverse data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Geo & Date & Fuel & ktCO2 & Sector & ... & Area & Pop & Avg_age & F.Unemp & Unemp & ... \\
\hline Barnet & 2015 & electricity & 130 & Domestic & & London & 8800 & 43.2 & - & - & \\
\hline City of London & 2015 & diesel & 200 & Transport & & Big Apple & 242500 & 36.4 & 62.9 & 4 & \\
\hline NYC & 2014 & coal & 125 & Domestic & & Barnt & 389600 & 37.3 & 66 & 8.5 & \\
\hline ... & ... & ... & ... & ... & & ... & & & & & \\
\hline
\end{tabular}

SELECT *
FROM emission e JOIN ? d
ON e.Geo ~ ?

\section*{Semantic Join Discovery}

KOIOS: Top-K Semantic Overlap Set Search,
P. Mundra, J. Zhang, F. Nargesian, N. Augsten, ICDE, 2023.

\section*{Semantic Joinability Measure}

Columbia
\[
\begin{aligned}
& \mathbf{Q}=\{\text { LA, Seattle, Columbia, Blaine, BigApple, Charleston }\} \\
& \mathbf{C}=\{\text { LA, Blain, Appleton, MtPleasant, Lexington, WestCoast }\}
\end{aligned}
\]

\section*{Semantic Joinability Measure}
```

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

```

sim("LA", "LA") = 1.0 sim("Seattle", "WestCoast") \(=0.7\)

\section*{Character-BASed Element Similarity}
```

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C}\mp@subsup{|}{1}{}={LA, Blain, Appleton, MtPleasant, Lexington
WestCoast}
C}\mp@subsup{C}{2}{=}{LA, Sacramento, Southern, Blain, SC, Minnesota
NewYorkCity}

```

3-grams of elements
Blaine = \{bla, lai, ain, ine\}
BigApple = \{big, iga, gap, app, ppl, ple\}
Appleton = \{app, ppl, ple, let, eto, ton\} Blain = \{bla, lai, ain\}
NewYorkCity = \{new, ewy, wyo, yor, ork, rkc, kci, cit, ity\}

Element similarity on 3-grams
Jaccard(Blaine, Blain) = 3/4 Jaccard(BigApple,Appleton) = 1/3
Jaccard(BigApple, NewYorkCity) = 0

\section*{Semantic Joinability Measure}
```

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

```

```

score(M) = 3.39

```
sim("LA", "LA") = 1.0
sim("Seattle", "WestCoast") = 0.7
Q = \{LA, Seattle, Columbia, Blaine, BigApple, Charleston\}
\(C_{1}=\{L A, B l a i n\), Appleton, MtPleasant, Lexington,
WestCoast\}



\section*{Semantic Overlap}
- Maximum matching of the bipartite graph of Q and C with \(\operatorname{sim}_{\alpha}(.\), . \()\) being any symmetric similarity function
\[
S O(Q, C)=\max _{M} \sum_{q_{i} \in Q} \operatorname{sim}_{\alpha}\left(q_{i}, M\left(q_{i}\right)\right)
\]
- \(|Q \cap C| \leq S O(Q, C)\)

\section*{Top-k Semantic Overlap Search}
- Semantic overlap ~ bipartite graph matching [Kuhan'1995]
- Problem. Given a column \(Q\) and parameter K, find the top- \(K\) columns based on the semantic overlap measure.
- Search complexity: \(O\left(m n^{3}\right), n\) is the size of sets and \(m\) is the number of sets

\section*{Koios: Filter-verification-Filter}
- Provably exact and efficient top-K search algorithm over large data lakes


Query Q, threshold \(\alpha\)

- refinement of bounds
- a partitioning scheme for efficient filtering
- candidate ordering
- prematurely terminating verification

C

\[
S O(Q, C)=\max _{M} \sum_{q_{i} \in Q} \operatorname{sim}\left(q_{i}, M\left(q_{i}\right)\right)
\]
\[
S O(Q, C)=4.49
\]
- How to approximate bipartite matching scores and perform top-K search based on approximations?

- Upper-bound
\[
U B(C)=|Q| . \text { max edge weight }
\]
- Expensive lower-bound
\(L B(C)=\) score of a greedy matching
\[
\angle B(C)=3.74<4.49
\]

\section*{INCREMENTAL BOUNDS}

- Assume an index returns the next best edges for all sets descendingly: (e, \(\mathrm{s}_{\mid+1}\) )
\[
\begin{gathered}
i L B(C)=\sum \text { edge weight in a greedy "partial" matching } \\
i L B_{l+1}(C)=i L B_{l}(C)+s_{l+1} \\
i \angle B(C)=1+0.99<4.49 \\
i \angle B(C)=1.99+0.9<4.49
\end{gathered}
\]

\section*{Incremental Bounds}

- Assume an index returns the next best edges for all sets descendingly.
\[
i L B(C)=\sum \text { edge weight in a greedy "partial" matching }
\]
\[
\begin{aligned}
i U B_{l+1}(C)= & m \cdot s_{l+1}+i U B_{l+1}(C), \quad \mathrm{m}=\min (|\mathrm{Q}|-|\mathrm{M}|,|\mathrm{C}|-|\mathrm{M}|) \\
& i U B(\mathrm{C})=2.84+2 * 0.85>4.49
\end{aligned}
\]

\section*{Filtering}

- \(\theta_{\mathrm{lb}}\) : \(k\)-th largest observed iLB's
- Maintain a running top-K LB-list
- Filter \(i U B(C)<\theta_{l b}\)
- Excessive updates of bounds

\section*{Partitioning Scheme}
- Dynamic partitioning of candidates during the filtering phase.


\section*{Early Termination of Bipartite Matching}

- Hungarian algorithm assigns and refines a labeling I: \(\{Q\} \cup\{C\} \rightarrow R\) s.t.
\[
l(q)+l(c) \geq \operatorname{sim}(q, c), \forall q \in Q, c \in C
\]
- Results. \(S O(C) \leq \sum_{x \in\{Q\} \cup\{C\}} l(x)\)
- Terminate matching computing as soon as \(\sum_{x \in\{Q\} \cup\{C\}} l(x) \leq \theta_{l b}\).

\section*{Evaluation: Semantic Join Search}
datasets statistics
\begin{tabular}{|l|l|l|l|c|}
\hline Dataset & \#Sets & \begin{tabular}{l} 
Max \\
Card.
\end{tabular} & \begin{tabular}{l} 
Avg. \\
Card.
\end{tabular} & \begin{tabular}{l} 
\#Unique \\
Elements
\end{tabular} \\
\hline DBLP & 4,246 & 514 & 178.7 & 25,159 \\
\hline OpenData & 15,636 & 31,901 & 86.4 & 179,830 \\
\hline Twitter & 27,204 & 151 & 22.6 & 72,910 \\
\hline WDC & \(1,014,369\) & 10,240 & 30.6 & 328,357 \\
\hline
\end{tabular}
comparison to SOTA
\begin{tabular}{|l|l|l|l|l|}
\hline Dataset & \begin{tabular}{l} 
KOIOS \\
Response \\
Time (s)
\end{tabular} & \begin{tabular}{l} 
SOTA \\
Response \\
Time (s)
\end{tabular} & \begin{tabular}{l} 
KOIOS Mem \\
\((\mathrm{MB})\)
\end{tabular} & \begin{tabular}{l} 
SOTA \\
Mem \\
\((\mathrm{MB})\)
\end{tabular} \\
\hline DBLP & 0.83 & 211 & 0.83 & 11 \\
\hline OpenData & 18.6 & 101 & 18.6 & 102.5 \\
\hline Twitter & 0.7 & 518 & 0.7 & 10 \\
\hline WDC & 147 & 1062 & 147 & 885 \\
\hline
\end{tabular}
- KOIOS achieves at least 5X speed up over the SOTA on massive data lakes.
- Even better speedup for medium and large queries compared to the SOTA.

\section*{BEYOND JOIN}

\section*{TABLE UNOIN DISCOVERY}


\section*{DIRECTORY STRUCTURE}

\author{
Health \\  \\ —— Food Safety \\ Food Production, ... \\ Energy \\ \[
\ldots
\] \\ Climate
}

\section*{A Search Engine on Open Data}


\section*{More on Dataset Discovery}

\section*{Feature Discovery}
- Given a target column and a join column from a query table, find joinable tables s.t. the table contains a column that is correlated with the target column.


Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD, 2021.

\section*{Feature Discovery}
- Evaluate correlation measures on the synopses that enable the reconstruction of a uniform random sample of the joined table.
- How to find attributes that are minimally correlated with sensitive attributes and highly correlated with the target attributes?
- The synopses may be biased towards the majority group


Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD, 2021.

\section*{Other Works}
- Table Discovery in Data Lakes

Table Discovery in Data Lakes: State-of-the-art and Future Directions, SIGMOD, 2023.
- Goal-Oriented Data Discovery

METAM: Goal-oriented Data Discovery, ICDE, 2023.

\section*{Outline}

DATASET DISCOVERY:
Syntactic and Semantic Join Search, Feature and Slice Discovery


QUERY ANSWERING:
Random Sampling over Union of Joins

FAIRNESS-AWARE DATA ACQUISITION:
Data Distribution Tailoring

\section*{DISTRIBUTION-AWARE DATA INTEGRATION}
- A model is not bad overall it performs poorly on certain slices of data.
- Data debiasing


Responsible Data Integration: Next-generation Challenges, F. Nargesian, A. Asudeh, H. V. Jagadish, SIGMOD 2022.

\section*{Group Representativeness}
- Groups: (in)dependent variables, protected groups, class labels, rare outcome groups, etc.
- Distribution
- What. counts of proportions over groups
- How. model debugging, data coverage [Asudeh+2018]


1 K monitoring data in Chicago with at
- Data
- Where. crowdsourcing, data lakes, data markets

\section*{Data Distribution Tailoring (DT)}
- How to construct a dataset that satisfies group distribution requirements from multiple sources in a cost-effective manner?
- Data debiasing: at the data acquisition step of data science pipeline

\footnotetext{
Tailoring Data Source Distributions for Fairness-aware Data Integration,
F. Nargesian, A. Asudeh, H. V. Jagadish, VLDB 2021.

Towards Distribution-aware Query Answering in Data Markets,
A. Asudeh, F. Nargesian, VLDB 2022.
}

\section*{Query, Data, Cost Models}
- Query: counts specified over some groups
- Tuple-at-a-time access to a source
- Sources return relevant data
- Paying a cost for samples: monetary, labeling, computation, etc.


\section*{Data Marketplaces}


Towards Distribution-aware Query Answering in Data Markets,

\section*{Data Distribution Tailoring (DT)}

target dataset

Problem. Given sources with their costs, and count requirements on the groups, select a sequence of sources to sample, s.t. count requirements are fulfilled, while the expected total query cost is minimized.

\section*{Are statistics about groups of interest available from data sources?}

\section*{Dt: DIRECT Optimization}
- Direct solution by defining the cost function and solving a DP problem
- Not practical for realistic settings
- Pseudo-polynomial time and space complexity

Package queries: efficient and scalable computation of high-order constraints, Brucato M. et al., VLDBJ 2018.

\section*{DT: COST FUNCTION}
\(P_{i j}^{j}\) : prob of obtaining \(G_{j}\) from \(D_{i}\)
\(F(Q)\) : expected cost of a target with counts \(Q\)
\(\xrightarrow{D}\) prob of \(G_{j}\) from \(D_{i}\)


\section*{A Dynamic Programming Solution}
cost groups
\begin{tabular}{|l|l|l|l|}
\hline & \(\mathrm{C}_{\mathrm{i}}\) & \(\mathrm{G}_{1}\) & \(\mathrm{G}_{2}\) \\
\hline \(\mathrm{D}_{1}\) & 2 & 0.2 & 0.8 \\
\hline \(\mathrm{D}_{2}\) & 3 & 0.4 & 0.6 \\
\hline
\end{tabular}
cost of obtaining a tuple of \(G_{1}\) from \(D_{1}: 2 / 0.2=10\) cost of obtaining a tuple of \(G_{1}\) from \(D_{2}: 3 / 0.4=7.5\)
\[
\begin{aligned}
& F(1,0)=\min (2 / 0.2,3 / 0.4)=7.5 \Leftarrow D_{2} \\
& F(0,1)=\min (2 / 0.8,3 / 0.6)=2.5 \Leftarrow D_{1}
\end{aligned}
\]

Query: \(\mathrm{G}_{1}: 1\) and \(\mathrm{G}_{2}: 1\)
\(F(1,1)\) : the cost of a target with \(G_{1}: 1\) and \(G_{2}: 1\)

select \(D_{1}: 2+0.2 F(0,1)+0.8 F(1,0)\)
select \(D_{2}: 3+0.4 F(0,1)+0.6 F(1,0)\)
\[
\begin{aligned}
& \mathrm{F}(1,1)=\min (2+0.2 \mathrm{~F}(0,1)+0.8 \mathrm{~F}(1,0), \\
& \quad 3+0.4 \mathrm{~F}(0,1)+0.6 \mathrm{~F}(1,0))=8.4 \Leftarrow \mathrm{D}_{1}
\end{aligned}
\]

\section*{DT: COST Function}
\(P_{j}^{j}\) : prob of obtaining \(G_{j}\) from \(D_{i}\)
\(F(Q)\) : expected cost of a target with counts \(Q\)
\[
F(Q)=\min _{\forall D_{i}} C_{i}+\sum_{j=1, Q_{j}>0}^{m} P_{i}^{j} F_{j}(Q)+\left(1-\sum_{j=1, Q_{j}>0}^{m} P_{i}^{j}\right) F(Q)
\]

\section*{Strategr: Known Distributions}
- Round-robin with priority strategy on groups
- Prioritize minority group
- rare and expensive to find
- Priority of \(\mathrm{G}_{\mathrm{j}}\) :
\[
\mathrm{D}_{* \mathrm{j}}=\underset{\forall \mathrm{D}_{\mathrm{i}}}{\operatorname{argmax}} \frac{\text { prob of } \mathrm{G}_{\mathrm{j}} \text { in } \mathrm{D}_{\mathrm{i}}}{\operatorname{cost} \mathrm{ofD}_{\mathrm{i}}}
\]
\(\operatorname{priority}\left(\mathrm{G}_{\mathrm{j}}\right)=\overline{\operatorname{cost}}\) per sample of \(\mathrm{G}_{\mathrm{j}}\)

\[
\text { if select } D_{* j}
\]

\section*{DT ANALYSIS}
- Prioritize minority group
- Result. Optimal for two groups and equi-cost model.

\section*{Optimal Equi-Cost Binary}
- Find the optimal source for each group: \(D_{* 1}\) and \(D_{* 2}\)
\[
\operatorname{priority}\left(G_{j}\right)=\frac{1}{\text { prob of } G_{j} \text { in } D_{* j}}
\]

select \(D_{* 1} \quad D_{*_{1}}\)
\(D_{* 2}\) has \(5 \%\) of \(G_{1}\) and \(95 \%\) of \(G_{2}\)
select \(D_{* 2}\)
\(\mathrm{D}_{\mathrm{t}_{2}}\)


\section*{General Non-Binary Dt: Analysis}

- Modeling the problem as \(m\) instances of the coupon collector's problem, where every instance \(j\) aims to collect samples from the group \(G_{j}\).

\section*{Coupon Collector’s Problem}
- Given \(n\) coupon types, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?
- Assume all coupons are equally likely.
- After one sample, we have seen one coupon.
- After two samples, we have seen the same coupon twice with probability \(\frac{1}{n}\) and two different coupons with probability \(\frac{n-1}{n}\).
- It is shown that the expected number of samples needed grows as
\[
\Theta(n \log n)
\]

\section*{DT ANALYSIS}
- Prioritize minority group
- Result. Optimal for two groups and equi-cost model.
- Expected cost of m-groups with arbitrary cost
\[
\begin{aligned}
& \quad \psi=\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{C}_{* \mathrm{j}} \mathrm{~N}_{* \mathrm{j}} \ln \frac{\mathrm{~N}_{* \mathrm{j}}^{\mathrm{j}}}{\mathrm{~N}_{* \mathrm{j}}^{\mathrm{j}}-\mathrm{Q}_{\mathrm{j}}} \rightarrow \text { \# of group jin } \mathrm{D}_{\mathrm{i}} \text { in } \mathrm{D}_{\mathrm{i}}
\end{aligned}
\]
- based on the coupon collector's problem [Motwani and Raghavan'1995]

\section*{Evaluation: Known Dt}

- Having access to more sources incurs lower DT cost.
- Random source selection is only suitable when no group is a minority in the repository!

\section*{DT : UNKOWN DISTRIBUTIONS}

- Multi-armed Bandit (MAB)
- Given a time horizon T, a centralized planner sequentially chooses actions, receiving stochastic reward from unknown distribution

\section*{MULTI-ARMED BANDIT}
- Sequential; exploration/exploitation tradeoff
- \(n\) arms; each arm \(\Gamma_{i}\) is associated with an unknown probability distribution \(v_{i}\) with mean \(\theta_{i}\).
- An agent selects an arm at every iteration.


\section*{MULTI-ARMED BANDIT}
- \(r_{t}=R\left(a_{t}\right)\) : reward of \(a_{t}\) taken from \(v_{i}\)
\[
\mathbb{E}\left[R\left(a_{t}=\Gamma_{i}\right)\right]=\theta_{i}
\]
- Goal is to maximize the expected cumulative reward
- \(A=a_{1}, \cdots, a_{T}\) : sequence of actions taken by an agent
- \(A^{*}=a_{1}{ }^{*}, \cdots, a_{T}{ }^{*}\) : optimal strategy
- Regret for not taking the optimal action
\[
L(A)=\mathbb{E}\left[\sum_{t=1}^{T}\left(\theta_{t}^{*}-R\left(a_{t}\right)\right)\right]
\]
\(\theta_{t}^{*}\) : optimal expected reward at t

\section*{Mab Strategies}
- Exploitation: query each data set once and focus on the source with maximum reward
- Works well with large \# sources or when distributions vary greatly
- Exploration: choose a source at random with equal budget chance
- Selection probability is inverse proportional to cost
- Works well when distributions are similar
- Upper Confidence Bound

\section*{Upper Confidence Bound}
- Exploration/exploitation trade-off
- UCB favors exploration of sources with a strong potential to have an optimal reward value.
\[
D=\underset{\forall D_{i}}{\operatorname{argmax}} \bar{R}_{t}(i)+U_{t}(i)
\]
- Hoeffding inequality
\[
U_{t}(i)=\left(R_{\mathrm{T}}(i)-R_{\perp}(i)\right) \sqrt{\frac{2 \ln t}{o_{i}}}
\]
\(t\) : \# samples, \(O_{i}\) : samples taken from \(D_{i}\)

\section*{DT : UNKOWN DISTRIBUTIONS}

- Multi-armed Bandit (MAB)
- Given a time horizon T , a centralized planner sequentially chooses actions, receiving stochastic reward from unknown distribution
- Goal: minimize regret

Regret \((T)=\) OPT reward @T - DT reward @T
- Optimal regret is \(\widetilde{\mathrm{O}}(\sqrt{\mathrm{T}})\).

\section*{Eps-greedy Mab for Dt}
- Explore with epsilon probability
- Sample a random source \(D_{t}\) and update empirical ratios of groups in the \(D_{t}\)
- Otherwise, exploit
- Two-level policy with a frequentist DT
- Group to prioritize
\[
\mathrm{G}_{\mathrm{t}} \leftarrow \operatorname{argmax}_{\mathrm{G}_{\mathrm{j}}}
\]
- Source to choose

- Results. An \(\varepsilon\)-greedy strategy with exploration probability \(\sqrt[3]{\ln t / t}\) at time \(t\) : regret of \(O\left(\mathrm{~T}^{2 / 3} \log \mathrm{~T}^{1 / 3}\right)\) at time \(T\) for equi-cost DT.

\section*{Data Acquisition for Ml}
- Consumers query providers for data to enhance the accuracy of their models.
- The task of the consumer is to identify a series of queries \(\left\langle\left(P_{1}, I_{1}\right), \ldots\right.\) , \(\left.\left(P_{z}, I_{z}\right)\right\rangle\) to obtain \(B\) records, where \(P_{i}\) and \(I_{i}\) being the predicate and the number of requested records in the \(i\)-th query.
- The objective is to improve as much as possible the accuracy of consumer's ML model on test data.

\section*{Data Acquisition for Ml}


\section*{Outline}

DATASET DISCOVERY:
Syntactic and Semantic Join Search, Feature and Slice Discovery


QUERY ANSWERING:
Random Sampling over Union of Joins

FAIRNESS-AWARE DATA ACQUISITION:
Data Distribution Tailoring

\section*{Responsible Data: Next Generation Requirements}

\section*{Data Bias in Ml Pipeline}


Nima Shahbazi, et al. CSUR, 2023.

\section*{Underlying Distribution Representation}
- Standard Assumption of Al: training data is i.i.d random samples drawn from the distribution that query points follow
- Not always easy to satisfy
- Not easy to verify
- Underlying distribution is usually unknown
- Challenging to verify that collected data is unbiased

\section*{Not Easy to Satisfy}
- Even if selected randomly
- Suppose surveys sent out to carefully chosen random sample
- Only a fraction of surveys returned

SAMPLING BIAS


\footnotetext{
"WE RECEIVED 500 RESPONSES AND FOUND THAT PEOPLE LOVE RESPONDING

TO SURVEYS"
}

\section*{Group Representation}
- The need to show adequate consideration of minority/rare groups, to ensure reliable outcomes for such groups

\section*{UnbiASED ANd Informative Features}
- An Al data set: a collection of attributes (features) \(\boldsymbol{x}=\left\{x_{1} \ldots x_{m}\right\}\)
- may also contain one (or more) target attribute (labels) \(\boldsymbol{y}\)
- sensitive attributes \(\boldsymbol{s}\) such as race and gender
- Often challenging to collect sensitive attributes
- Example: users of a shopping website
- Usually do not collect the sensitive information of the users

\section*{Informative Features}
- Performance of ML models depends on the set of attributes a data set contains
- E.g., in classification predict the target variable using the observations
\(\rightarrow\) High correlation between \(\boldsymbol{x}\) and \(\boldsymbol{y}\)

\section*{Unbiased Features}
- Sensitive attributes are used to specify (demographic) groups considered for fairness
- E.g.: race=\{White, Black, Hispanic, others\}
- Low correlation between the features and the sensitive attributes
- Ideally \(\boldsymbol{x}\) and \(\boldsymbol{s}\) should be independent

\section*{Completeness and Correctiness}
- Always important, even more critical for responsible AI
- incomplete and incorrect data typically hurt minorities, further increasing the data bias in such cases.
- Example
- Two groups (minority and majority); a small portion belong to the minority
- A simple task: compute average
- An incorrect majority value does not significantly impact the average
- An incorrect minority value may significantly skew the average

\section*{Scope of use Augmentation}
- Collecting data that fully satisfies all requirements is often not possible in practice.
- Some of the requirements may conflict with others
- Group representation requirement may conflict with i.i.d sample requirement
- Every data set has a limited scope of use. No data set is good for all tasks.
- To ensure transparency:
- embed data with the meta-data and information that describe its collection process, its limitations, and its fitness for use

\section*{SAMPLING OVER DATA LAKES?}

\section*{UNIFORM AND INDEPENDENT SAMPLING}
- ML on integrated data is inherently expensive
- Luckily, in many tasks (e.g. AQP and statistical learning), a random sample suffices for analysis
- Samples should satisfying Underlying Distribution Representation and Group Representation requirements

\section*{Uniform and Independent Sampling}
- Sampling a single source
- Stratified sampling to ensure that minority groups are sufficiently represented in the sample
- Given a set of sensitive attributes and an integer parameter \(k\), a stratified sampling guarantees at least \(k\) tuples are sampled uniformly at random from each group. When a group has fewer than \(k\) tuples, all of them are retained.

Join on Samples: A Theoretical Guide for Practitioners, Huang et al., PVLDB, 2019.

\section*{Ml on Normalized Data}
- Predicting the return flag of an item shipped to a customer using features of both the item and another item shipped to the same customer requires (self-) join

Label Features
\begin{tabular}{|l|lllllll|}
\hline Flag & Custld & Region & Total & Discount & Flag2 & Total2 & Discount2 \\
\hline 1 & 10 & 2 & 100 & 0.2 & 0 & 20 & 0.5 \\
\hline 0 & 20 & 1 & 200 & 0.0 & 0 & 100 & 0.1 \\
\hline 0 & 20 & 1 & 500 & 0.1 & 0 & 300 & 0.2 \\
\hline\(\ldots\) & \(\ldots\) & & & & & & \\
\hline
\end{tabular}

\section*{Ml on Normalized Data}
```

SELECT
l1.l_returnflag, n_regionkey, s_acctbal,
l1.l_quantity, l1.l_extendedprice, l1.l_discount,
l1.l_shipdate, o1.o_totalprice, o1.o_orderpriority,
l2.l_quantity, l2.l_extendedprice, l2.l_discount,
l2.l_returnflag, l2.l_shipdate
FROM nation, supplier, lineitem l1, orders o1,
customer, orders o2, lineitem l2
Joining 7 TPCH tables
WHERE s_nationkey = n_nationkey
AND s_suppkey = l1.l_suppkey
AND l1.l_orderkey = o1.o_orderkey
AND o1.o_custkey = c_custkey
AND c_custkey = o2.o_custkey
AND o2.o_orderkey = l2.l_orderkey;

```

\section*{IID SAMPLING OVER JOIN}
- Training a classifier using SVM on a join over 7 tables
- Full join takes more than 12 hours to compute.
- Training runs forever without down-sampling.


\section*{IID SAMPLING OVER JOIN}
- Given \(T_{1}\) and \(T_{2}\), a sampling algorithm A is iid, if tuples returned by A all have the same sampling probability and the appearances of two tuples in the sample are independent events.

\[
R(A, B) \bowtie S(B, C)=R(A, B, C)
\]

Goal: sample \(t \in R\) with probability \(\frac{1}{10}\)


\section*{IID SAMPLING OVER JOIN}
- Sampling cannot be pushed down in join
\[
\operatorname{sample}(R) \bowtie \operatorname{sample}(S) \neq \operatorname{sample}(R \bowtie S)
\]
- If independent samples are taken from \(R\) and \(S\), the result of joining uniform samples is a uniform sample of the join but not an independent one.
- Consider independent Bernoulli samples with probability p from \(R\) and S
- \(P\left(t_{1}, t_{2}\right)=p^{2}, t_{1} \in R\) and \(t_{2} \in S\)
- \(P\left(t_{1}, t^{\prime}{ }_{2}\right)=p, t_{1} \in R\) and \(t_{2}^{\prime} \in S\)
- Uniform and dependent

\section*{IID SAMPLING OVER JOIN}
- Two-table join

On Random Sampling over Joins, Chaudhuri et al., SIGMOD, 1999.
Random Sampling from Databases, Olken, Ph.D. Dissertation, 1993.
- Multi-way foreign key joins

Join Synopses for Approximate Query Answering, Acharya et al., SIGMOD, 1999.
- Ripple join (uniform but correlated samples)

A scalable hash ripple join algorithm, Luo et al., SIGMOD
2002.
- Wander join (independent but non-uniform samples)

Wander Join: Online Aggregation via Random Walks, Lo et al., SIGMOD 2016.

\section*{IId SAMPling over Generic Join Paths}
- Randomness: return tuples from a join path J = \(\mathrm{T}_{1} \bowtie \ldots \bowtie \mathrm{~T}_{\mathrm{n}}\) with probability \(1 /|\mathrm{J}|\)
- Independence: generate sampled results continuously until a certain desired sample size \(k\) is reached

\section*{IID SAMPLING OVER JOIN}
- A join path is modelled as DAG
- nodes: tuples
- edges: joinable tuples
- Weight \(w(t)\) : \# join results starting frc \({ }^{5}\) tuple t
- Sample proportional to weight

\(R_{n}\)

\section*{IID SAMPLING OVER JOIN}
- A join path is modelled as DAG
- nodes: tuples
- edges: joinable tuples
- Weight \(w(t)\) : \# join results starting frot tuple t

- Sample proportional to weight
- Use a surrogate weight \(W(t)\) if \(w(t)\) is not available. \(W(t)\) : upper bound of \(w(t)\)
- Reject with prob. \(\frac{W(t)-\sum_{t^{\prime} \in c h(t)} W\left(t^{\prime}\right)}{W(t)}\)

- Return when leaf

\section*{UNION OF JOINS}


\section*{Joins and unions are Expensive.}


\section*{Random Sampling over Union of Joins}
- Fortunately, no need to compute full results.
- A uniform and independent sample can achieve a bounded error [Vapnik+1971].
- Robust for any models
- Problem. Given a set of joins \(L=\left\{J_{1}, \ldots, J_{n}\right\}\), let \(U\) be the discrete space of set union \(U=J_{1} \cup \ldots U J_{n}\), return \(N\) independent samples \(S\) from \(U\), without performing join and union, s.t.
\[
P(t \in S)=\frac{1}{\left|J_{1} \cup \cdots \cup J_{n}\right|}
\]

\section*{Responsible Data AcQuisition}
- Multi-modal dataset construction (visual analytics)
- Uniformity across all modalities
- Data subset selection (coreset construction) under distribution constraints
- Data subset selection with K-coverage, group representation, and diversity
- Coresets over join paths
- Coresets over noisy, dynamic, and stream data
- Auditing existing data management algorithms
- Data cleaning and schema mapping

\section*{Coreset Construction}
- Coreset construction under distribution constraints
- Data subset selection with K-degree, group representation, and diversity
- Coresets over join paths
- Coresets over noisy, dynamic, and stream data

social network


ImageNet


NYC taxi data

\section*{Auditing Data Management Pipelines}
- Synergies and transparency and fairness
- Auditing data cleaning techniques
- Entity matching
- Schema mapping
- How bias is propagated through join and union operations?
- Leads to developing new algorithms


\section*{Human-Centric Data Acquisition}
- The design of a domain-specific programming language for data lake programming
- Syntax and semantics of operators and programming constructs
- Type checking
- Iterative algorithms and programming language design

- Dialogue-based query answering over data lakes

\section*{Acknowledgement}
- Abolfazl Asudeh (UIC)
- Nikolaus Augsten (U. Salzburgh)
- H. V. Jagadish (U. Michigan)
- Renée J. Miller (NEU)
- Divesh Srivastava (AT\&T)
- Ken PU (UOIT)
- Eric Zhu (MSR)
- Jiwon Chang (UR undergrad student)
- Nikola Danevski
- Yurong Liu (UR undergrad student)
- Pranay Mundra (UR grad student)
- Nima Shahbazi (UIC grad student)
- Draco Xu (UR undergrad student)
- Jianhao Zhang (UR grad student)

THANKS.```

