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* Al is ubiquitous.
 Data-centric Al: focus from big data to good data.

* Open data repositories and data markets have become prevalent.



Data repositories as fiyeaENXeiir{IsM

* Sources: open governments, web [ElE IR INSHE R EIE R Bl ES

* Large number of datasets

» Disconnected and heterogeneous CEIENEES

* Topics vary 50,820,165
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-_E{]ATAGO\/ DATA TOPICS - RESOURCES STRATEGY DEVELOPERS CONTACT

Order by:

Search datasets...
Popular v

Filter by location Clear

246,074 datasets found

FDIC Failed Bank List |~ 1883 recent views

" Enter location...

A

6,
Federal Deposit Insurance Corporation — The FDIC is often appointed as receiver for failed %/;, 9
banks. This list includes banks which have failed since October 1, 2000.

Map data © OpenStreet
Tiles by Stamen Design (

Topics * Interesting computational problems

Local G ¥ 17324 %
ocal Bovermnmen - Department of Education — The National Student Loan Data System (NSLDS) is the %/;,
Climate @I national database of information about loans and grants awarded to students under Title IV
Older Adults... ) A 1
Energy m P (BB 11 more in dataset
Topic Categories U.S. Chronic Disease Indicators (CDI) |~ 1144 recent views A
U.S. Department of Health & Human Services — CDC's Division of Population Health %z;, 9

Arctic @ provides cross-cutting set of 124 indicators that were developed by consensus and that
Water @ allows states and territories and large...



Goal: query answering and dataset qeJaigledle]ak
* Distribution and representativenessiiplelERENTIESIEI e K[V r=1o,

 Efficient, scalable, cost-effective so|Uidle]als

: s
1K breast cancer data in train early detection

Chicago with at least 30%——5| f breast cancer 50,820 165
label= positive, and at ] : s

: test
least 20% African =
American patients
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 Assistant Professor of CS, University of Rochester Colugous Pt
* Research: data for Al and scientific time-series management . x g | l%l

e Education
* Undergrad in computer engineering and MSc. in Al, Tehran, Iran
e PhD -> MSc. in CS, University of Ottawa
* PhD in CS, University of Toronto
* Dataset discovery and integration; autoML
* Worked at clinical informatics research group of McGill University; IBM research
internships



LOGISTICS

* Many additional references in the slides
* Questions any time during the talk

* The material based on two tutorials:




OUTLINE

DATASET DISCOVERY: QUERY ANSWERING:
Syntactic and Semantic Join Search, Random Sampling
Feature and Slice Discovery over Union of Joins

FAIRNESS-AWARE DATA
ACQUISITION:
Data Distribution Tailoring



DATASET DISCOVERY



E{]ATAGOV DATA  TOPICS ~ RESOURCES STRATEGY DEVELOPERS CONTACT

Order by:

Search datasets... keyWO rd S e a rC h

Data Lake Management: Challenges and

Opportunities
F. Nargesian, E. Zhu+, VLDB, 2019.

Filter by location Clear

246,074 datasets found

FDIC Failed Bank List |~ 1883 recent views

{ Enter location... v ‘

&
@,
Federal Deposit Insurance Corporation — The FDIC is often appointed as receiver for failed %/;, 9
banks. This list includes banks which have failed since October 1, 2000.

Electric Vehicle Population Data |~ 1605 recent views

State of Washington — This dataset shows the Battery Electric Vehicles (BEVs) and Plug-in
J Hybrid Electric Vehicles (PHEVs) that are currently registered through Washington State

: Department...
Map data © OpensStreetMap contributors.

/

Topics
National Student Loan Data System |~ 1175 recent views
Local Government %o
Department of Education — The National Student Loan Data System (NSLDS) is the %,
Climate national database of information about loans and grants awarded to students under Title IV
Older Aduts... @) A 1
Energy Q P (BB 11 more in dataset
Topic Categories U.S. Chronic Disease Indicators (CDI) |~ 1144 recent views A
. U.S. Department of Health & Human Services — CDC's Division of Population Health %/;, 9
Arctic @) provides cross-cutting set of 124 indicators that were developed by consensus and that 10

Water @) allows states and territories and large...
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SELECT ??

FROM ?? JOIN ?7?
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UNION Union of Conjunctive OQWEEES

SELECT ?7

FROM ?? JOIN ?7? ‘ \
UNION ‘
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3,562 35,675 >1,363 WDC Web Table 2015
. Data (English Relational
Romania Canada UK USA Marketplaces Subset)

11



SEARCH BY JOIN
citydata

I
e |

Barnet 2015  electricity 130 Domestic ---I--

City of London 2015 diesel 200 Transport

Camden 2014 coal 125 Domestic ---
\ query

column
et 20 () ()

FROM emission e JOIN ?7?
ON e.Geo = 77
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emission citydata

COICTEN S O T T

City of London 2015 diesel 200 Transport Camden 242500 36.4 62.9 4

Camden 2014 coal 125 Domestic Cambridge 389600 37.3 66 8.5

|

SELECT *
FROM emission e JOIN citydata d
ON e.Geo = d.Area

]

) ) i i L e e

Camden 2014 Coal 125 Domestic 142500 36.4 -

City of London 2015 diesel 200 Transport 242500 43.2 62.9 4

Barnet NULL NULL NULL NULL

13



SYNTACTIC JOIN DISCOVERY

LSH Ensemble: Internet-Scale Domain Search,

E. Zhu, F. Nargesian, K. Pu, R. J. Miller, VLDB, 2016.

JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data
Lakes, E. Zhu, D. Dong, F. Nargesian, PU, Miller, SIGMOD 2019.



JOINABILITY MEASURE

* Columns as sets

Overlap(Q,X) = |Q N X|

. _lenx]
Containment(Q, X) = x|
Jaccard(Q,X) = :g Si:

e Columns as multisets

* Related work [Bessa+POD’23, Santos+ICDE’22,
Santos+SIGMOD’21, Fernandez+ICDE’19]

Data Lakes

15



JACCARD VS. CONTAINMENT

* Suppose there are the following two columns in the repository
Provinces = {Alberta, Ontario, Manitoba}

Locations = {lllinois, Chicago, New York, Nova Scotia, Halifax, California, San
Francisco, Seattle, Washington, Ontario, Toronto}

* Consider the following query columns
Q = {Ontario, Toronto}

* Top-1 joinable columns based on Jaccard? Top-1 joinable columns based on
containment?

Jaccard(Q,P) = 1/4, Containment(Q,P)=1/2 c _ <) = |0 N X|
Jaccard(Q,L) = 2/11, Containment(Q,P)=1 ontainment(Q, X) = 1X|
Jaccard is biased towards smaller columns |0 N X|

Jaccard(Q, X) =

|Q U X]|

16




DATASET DISCOVERY

* Threshold-based search: Given a query Q and a joinability measure J,
find columns X s.t. J(Q,X) >=t*.

* Top-k search: Given a query Q and a joinability measure J, find k
columns X s.t. J(Q,X) >=t*.

17



THRESHOLD-BASED CONTAINMENT SEARCH

* Problem. Given a query Q and containment threshold t*, find columns X s.t.
containment(Q,X) >=t*.

. |Q N X|
containment(Q,X) = W
Query Colurrm-zu Canadian OD Web Tables
Q = (Bost o [T T TR R T T T
Columns in i § 20 - Rgidodbooqatt Lo ¥t bl ]
8 | @ o 21 P
Geo = {Ed 5 .._ 4
Locations & »L | Seattle, NYC}
Ce z 2 o x
. O [l ly e 50 L] 18 L
SearCh Wlth 2 20 93 56 59 21221521&;2212 50 92 24 56 8 510512514 )t Geo
Domain Size Domain Size

* Existing technique for containment search results in low recall for skewed column
size distributions [Srivastavali2015].
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LSH ENSEMBLE

Deals with data volume and skew!

First phase: columns are partitioned based on the distribution of column
cardinality.

Second phase: construct a MinHash LSH index for each partition and parallel
search

Accurate over columns whose sizes are skewed (e.g., power-law dist.)

19



MINHASHING FOR JACCARD
NEAREST NEIGHBOR SEARCH

* MinHash LSH an index for R-near neighbor based on Jaccard.



MINHASHING

* Key idea: “hash” each column C to a small signature h(C), such that:
* (1) h(C) is small enough that the signature fits in RAM
* (2) sim(C;, C,)is the same as the “similarity” of signatures h(C;) and h(C,)

e Goal: Find a hash function h(:) such that:
* If sim(C;,C,) is high, then with high prob. h(C;) = h(C,)
* If sim(C;,C,) is low, then with high prob. h(C;) # h(C,)

e Hash cols into buckets. Expect that “most” pairs of near duplicate cols
hash into the same bucket!

21



MINHASHING

* Goal: Find a hash function h(:) such that:
* if sim(C,,C,) is high, then with high prob. h(C;) = h(C,)
» if sim(C;,C,) is low, then with high prob. h(C;) # h(C,)

* Clearly, the hash function depends on the similarity metric:
* Not all similarity metrics have a suitable hash function

* There is a suitable hash function for the Jaccard similarity: It is called
Min-Hashing

22



MINHASHING

* Imagine the rows of the boolean matrix permuted under random
permutation 7

* Define a “hash” function h (C) = the index of the first (in the permuted
order 1) row in which column C has value 1:

h.(C) =min_ (C)

» Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column

23



MINHASHING - EXAMPLE

Permutationt  Input matrix (Shingles x Documents)

1 (0 (1 |O
1 (0 (0 |1
O |1 |0 |1
O |1 |0 |1
O |1 |0 |1
1 (0 (1 |O
1 (0 (1 |O




MINHASHING - EXAMPLE

Permutationt  Input matrix (Shingles x Documents)

2 1 (0 (1 |O

AU R O[N] W
R | PO O O|KR
OO r | FRL,|KFL,L|O
R | PO O O|O
OO R | FRPR|KFR|K




Permutation it

B
3
/
6
1
5
4

MINHASHING - EXAMPLE

Input matrix (Shingles x Documents)

1 (0 (1 |O
1 (0 (0 |1
O |1 |0 |1
O |1 |0 |1
O |1 |0 |1
1 (0 (1 |O
1 (0 (1 |O

—)

Signature matrix M

26



MINHASHING - EXAMPLE

2"d element of the
permutation is the first to map

Permutatio Input%et‘r:x (Shingle cuments) Signature matrix M

1“lo |1 |o

3 1 |0 |0 |1

7 0 |1 |0 |1

6 o |1 [0 |1 |2

1 0 |1 |0 |1

5 1 |o |1 |0

4 1 {0 |1 |0




MINHASHING - EXAMPLE

2"d element of the
permutation is the first to map

Permutatio Input%ir:x (Shingle cuments) Signature matrix M
4 1“lo |1 |o

3] 2 1 |0 |0 |1

7111 O |1 (0 |1

6(]3 o |1 [o |1 |2

e 0o [1 |0 |1

5[] 7 1 (o |1 |0

AE 1 |0 [1 |0




MINHASHING - EXAMPLE

2"d element of the
permutation is the first to map

tgfa 1
Permutatio Input %trix (Shingle cuments)

1¥

Signature matrix M

4 0 1k 0
N
3 3\\1\ 0 [0 Ta 11 12 12
7([a] o Tafo |1}
6/[3] o |1 o\\k&z
1116 0 1 0) 1 \ 4" element of the permutation
is the first to map to a 1

517 1 10 |1 |0
4115 1 /0 |1 |0 )




MINHASHING - EXAMPLE

2"d element of the
permutation is the first to map

to/a 1

Permutatio Input }ch\et]rix (Shingle$»~Rocuments) Signature matrix M

af|3| {2%|o |1_]o

N
3(|2 Z:\\l\ 0 (0 [\
7\[a]l7] {0 Tafo |1}
6|[3][2] |0 |1 [0t
1 6 6 0 1 0 1 4t element of the permutation
is the first to map to a 1

5117]|1 1 |0 (1 |0
4115]15 1 |0 (1 |0 30




MINHASHING PROPERTY

* Choose a random permutation «
e Claim: Pr[h.(Cy) = h (C,)] =sim(Cy, Cy)
 Why?

* Let X be a col (set of shingles), y e X'is a shingle
* Then: Pr[r(y) = min(rt(X))] = 1/| X]|

* Itis equally likely that any y € X is mapped to the min element
e Let y be s.t. m(y) = min(n(C,LC,))
* Then either: n(y) = min(n(Cy)) ify € C;, or

(y) = min(n(Cy)) ify € G,

* So the prob. that both are true is the prob. y € C; N G,
* Primin(r(C,))=min(n(C,))]=1CiNC, | /1 C1uC, | = sim(Cy, C;)

RO O | =[O O

O|lFr | O|m=» | O] O




FOUR TYPES OF ROWS

* Given cols C; and C,, rows may be classified as:

G G
A 1 1
B 1 0
C 0 1
D 0 0

* a =# rows of type A, etc.
* Note: sim(C,, C,) = a/(a +b +c)
° Then: Pr[h(cl) = h(Cz)] = S/m(Cl, Cz)

* Look down the cols C; and C, until we see a 1

 If it’s a type-A row, then h(C;) = h(C,)
If a type-B or type-C row, then not

32



SIMILARITY OF SIGNATURES

* We know: Pr[h.(Cy) = h.(C,))] =sim(Cy, C))
* Now generalize to multiple hash functions

* The similarity of two signatures is the fraction of the hash functions in which
they agree

* Note: Because of the Min-Hash property, the similarity of columns is the
same as the expected similarity of their signatures

* It can be shown that h(C1) = h(C2) is an unbiased estimator of sim(C1,
C2)

e An estimator is unbiased if its expected value is equal to the true value
of the parameter.

33



MINHASHING - EXAMPLE

Permutationt Input matrix (Shingles x Documents . .
P ( . ) Signature matrix M

2114113 1 |0 (1 |0 2 11 12 |1
3112114 1 |0 (0 |1 > 11 la |1

O (1 |0 |1 rrromr-
4| 5[ 1 (2 (1 |2
o[3ll2] [0 [1 [o |1 [=)
11166 O |1 |0 |1 Similarities:

13 24 12 34

SI{7IfL] |1 (O |1 |O | colfcoll075 0.75 0 o0
allslis| [1 [0 |1 o | sie/siglo67 1.00 0 o0




MINHASHING - EXAMPLE

* Pick K=100 random permutations of the rows
* Think of sig(C) as a column vector

* sig(C)[i] = according to the i-th permutation, the index of the first row
that hasa 1 in column C

sig(C)[i] = min (m;(C))
* Note: The sketch (signature) of document Cis small ~500 K bytes!

* We achieved our goal! We “compressed” long bit vectors into short
signatures



MINHASHING FOR JACCARD
NEAREST NEIGHBOR SEARCH

* MinHash LSH [BroderS7, IndykS&]: an index for R-near neighbor based on Jaccard.

e Each column is represented with one or more minhash values.

hash func. h(x)

l minhash of set
X4 12,10 Pr[minhash(X;) = minhash(X;)]
X, 12,2, 4 = Jaccard(X;, X))

X 1,12,9,7,5,90

37



MINHASHING FOR JACCARD
NEAREST NEIGHBOR SEARCH

* MinHash LSH [BroderS7, IndykS&]: an index for R-near neighbor based on Jaccard.

e Each column is represented with one or more minhash values.

signature: k minhash

10 |13 [ 17 [ 10 |34 | 10 Pr[minhash(X;) = minhash(X;)]
= Jaccard(X;, X))

12 111 | 2 4 6 7

Jaccard(X;, X;) ~
# colliding minhash / hash funcs.




SKETCHING

* MinHash LSH [BroderS7, IndykS&]: an index for R-near neighbor based on Jaccard.

e Each column is represented with one or more minhash values.

query Q
signature: k minhash requires linear scan! /
X1 10 |13 [ 17 [ 10 |34 | 10 10 | 12 1
12 112 [4 |6 |7 13 |11 ) 12
X2
17 | 2 . 9
minhash
10 |4 . 7 :
signature
34 |6 5
X 1 129 [7 |5 |90 10 | 7 90
n

set/col. 39



LOCALITY SENSITIVE HASHING (LSH)

If we were to use Jaccard

Similar sets: similar signatures [Broder97, Indyk98]

Hash bands into buckets 1

D, D, Dy D, Ds Dg Dy

query Q and
Jaccard
threshold

Columns hashed to same bands are r minhash I
values

potential candidates for joinable cols.
b bands

* Post-process candidates to find _

cols. with similarity > threshold

buckets

/
[\)‘21 Djm

De

e

joinable candidates

40



THRESHOLD-BASED CONTAINMENT SEARCH

* Problem. Given a query Q and containment threshold t*, find columns X s.t.
containment(Q,X) >= t*.

. |Q N X|
containment(Q,X) = ——

QI

41



INDEX A PARTITION

largest col. s@edonsdatition

I I I I

new ad
false positives

0.0 0.2 0.4 0.6 0.8

1.0 -
* .
S e containment 0.8 -
—t* threshold t* - gsh
Jaccard threshold § o4r
0.2 —
0.0
cols. X with
— ck
laccard{Q,X) >=s remove old and new
> —

query Q

false positives

Tcontainment =
Tiaccarg + ©(correct result) +

containment

cols. X with
Containment(Q,X) >=t*

@(NFP)

/

time to

process false positives

42




each partition has

ts own thresholc PARTITIONING SCHEME

execute query in parallel
mlnhash mmhash minhash
LSH LSH LSH

* Query cost is determined by the partition with the highest # false positives.

[T" = argmin (maxi<j<,M;)
T~ # false positives in partition i

e Data partitioning as an optimization problem.
e The partitioning in which all M/s are the same.

43



PARTITIONING SCHEME

execute query in parallel
mlnhash mmhash minhash
LSH LSH LSH

* Query cost is determined by the partition with the most # false positives.

" = argmin (max,cicaMy) -
# false positives in partition i

# of columns in a partition
P \ ui — li + 1

assuming uniform dist. of sizes
M; <Ny = g
i

* How to choose partition bounds | and u?

44



OPTIMAL PARTITIONING

Canadian OD Web Tables
21 e R

12 . .
212 Lp ..
o

st0 [ #
28 Lo
26 L} ] s
p.ll B B

* Exists an optimal partitioning for any data distribution.

e For power-law distributions, the optimal partitioning

Number of Domains

can be approximated using equi-depth.

20 23 26 29 212 215 218 2212 20 22 24 26 28 210212 214
Domain Size Domain Size

minhash minhash minhash
LSH LSH LSH

& »
< >

Partition width

45



QUERY PERFORMANCE

e On WDC Web Table: ~263 million columns

Algorithm Mean Query (sec) Precision Before Pruning (t*=0.5)
MinHash LSH 45.13 0.27
LSH Ensemble (8) 7.55 0.48
LSH Ensemble (16) 4.26 0.53
LSH Ensemble (32) 3.12 0.58

* Speedup is due to

 fewer false positive columns to process (higher precision)

 parallelization




SEARCH ON VECTORS

 Hierarchical Navigable Small World (HNSW) for vector search

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small
World graphs, Yu A. Malkov and D. A. Yashuin, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 2020.

* Practical and efficient index structure for a variety of distance measures

Billion-scale similarity search with GPUs, J. Johnson et al., IEEE Transactions on Big Data, 2019

47



JOIN AND DIRTY DATA

* Containment may become ineffective for joining data in the wild.
* Dirty and semantically diverse data

oo e | R [ oo rrs i

2015 electricity 130 Domestic ~< 8800 43.2

_2015 diesel 200  Transport  ~7 \:x,,»- 242500 364 629 4
_2014 coal 125 Domestic - ‘a- 389600 37.3 66 8.5

SELECT *
FROM emission e JOIN 7 d
ON e.Geo ~ ?

48



SEMANTIC JOIN DISCOVERY



LA
Seattle

Columbia

LA

Blain

Appleton

SEMANTIC JOINABILITY MEASURE

{LA, Seattle, Columbia, Blaine, BigApple, Charleston}

{LA, Blain, Appleton,

MtPleasant,

Lexington, WestCoast}

50



SEMANTIC JOINABILITY MEASURE

{LA, Seattle, Columbia, Blaine, BigApple, Charleston}
{LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

Q @@ > D
C ’ ppleton tPleasant

sim(“LA”, “LA”) = 1.0
sim(“Seattle”, “WestCoast”) = 0.7

51



CHARACTER-BASED ELEMENT SIMILARITY

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C, = {LA, Blain, Appleton, MtPleasant, Lexington,
WestCoast}
C, = {LA, Sacramento, Southern, Blain, SC, Minnesota,
NewYorkCity}
3-grams of elements Element similarity on 3-grams
Blaine = {bla, 1lai, ain, ine} Jaccard(Blaine, Blain) = 3/4
BigApple = {big, iga, gap, app, ppl, ple} Jaccard(BigApple,Appleton) = 1/3
Appleton = {app, ppl, ple, let, eto, ton} Jaccard(BigApple, NewYorkCity) = 0
Blain = {bla, lai, ain}
NewYorkCity = {new, ewy, wyo, yor, ork,
rkc, kci, cit, ity}

52



SEMANTIC JOINABILITY MEASURE

{LA, Seattle, Columbia, Blaine, BigApple, Charleston}
{LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

Q @ Seattle BigApple
—7 7 Matching
.99 M
Appleton) (MtPleasant WestCost

sim(“LA”, “LA”) = 1.0
sim(“Seattle”, “WestCoast”) = 0.7

score(M) = 3.39

53



Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}

= {LA, Blain, Appleton, MtPleasant, Lexington,

WestCoast}
Q @ Seattle BigApple
; 7 maximum

7,
SEMANTIC OVERLAP

matching

WestCost

* Maximum matching of the bipartite graph of Q and C with sim,(., .) being any
symmetric similarity function

50(Q.C) = maxy ) sim(qi, M(4p)
qi€Q
*1QNC| <S50(Q,0)

54



TOP-K SEMANTIC OVERLAP SEARCH

* Semantic overlap ~ bipartite graph matching

* Problem. Given a column Q and parameter K, find the top-K columns based on
the semantic overlap measure.

» Search complexity: O(mn3), n is the size of sets and m is the number of sets

55



KOIOS: FILTER-VERIFICATION-FILTER

* Provably exact and efficient top-K search algorithm over large data lakes

incremental and
cheap filtering

order cols X based on
upper bound of
sem-overlap(X,Q)

Query Q,
threshold

more
filtering

candidates

* refinement of bounds
* a partitioning scheme for

efficient filtering

Y

verification w/
termination

e candidate ordering
* prematurely terminating

verification

> top-K columns X

56



maximum
matching M

50(Q.€) =maxy ) sim(q: M(a))

qi€Q

50(Q, C) = 4.49

* How to approximate bipartite matching scores and perform top-K search based
on approximations?

57



: @@@@

50(Q,€) =maxy ) sim(q;M(4p)
qi€Q
* Upper-bound
UB(C) = |Q|.max edge weight

* Expensive lower-bound
LB(C) = score of a greedy matching

LB(C) = 3.74 < 4.49

58



INCREMENTAL BOUNDS

¢ (1) Geett1o Columed Qarteston jf
1
¢ ([A) Gacranent® Gouthern (Blain) (50) @innesotd EeworkCity>

e Assume an index returns the next best edges for all sets descendingly: (e, Sj.1)

ILB(C) = Z edge weight in a greedy “partial” matching
iLB;11(C) = iLB;(C) + s144

1 +0.99 < 4.49
1.99 + 0.9 < 4.49

7LB(C)
7LB(C)

59



INCREMENTAL BOUNDS

0 () Geat 11D CounsTd Eloind EeAppio Charleston j[’
\. 85 S .85 8t

* Assume an index returns the next best edges for all sets descendingly.

ILB(C) = Z edge weight in a greedy “partial” matching

iUB1+1(C) = m.s;41 +iUB11(C),  m = min(|Q| — [M],|C| —[M])
7UB(C) = 2.84 + 2%0.85 > 4.49
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[

incremental and
cheap filtering

FILTERING

Query Q,
threshold

SO

more
filtering

r g

candidates

0, : k-th largest observed iLB’s

Maintain a running top-K LB-list

Filter lUB(C) < le
Excessive updates of bounds

verification w/
termination

—> top-K columns X

61



PARTITIONING SCHEME

* Dynamic partitioning of candidates during

the filtering phase.

[

incremental and
cheap filtering

Si+1 |_ - _ _
| m=1 m=2 m=|Q|-1
| C]_ é:; C
a a ordered | ¢, Cs CS
___________ Uery &, by iLB,(C, Cy 6
threshold « Y Il( )RS _ .
|
|
more e -
filtering

candidates

>

/\E)Prune if iLB,(C)+ m - s< 8,

verification w/
termination

—> top-K columns X
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EARLY TERMINATION OF BIPARTITE MATCHING

1 0.8
@ @ Eighpp1ed Charteston
)
@ Appleton tPleasant @

1 1 0.99

* Hungarian algorithm assigns and refines a labeling I: {Q}U {C}—>R s.t.

[(q) + l(c) = sim(q,c),Vq € Q,c€EC
* Results. SO(C) < ZxE{Q}U{C}l(x)

* Terminate matching computing as soon as X.,.cqojuicy L(X) = Opp.
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EVALUATION: SEMANTIC JOIN SEARCH

datasets statistics comparison to SOTA

Dataset #Sets Max Avg. #Unique Dataset KOIOS SOTA KOIOS Mem | SOTA

Card. Card. Elements Response | Response | (MB) Mem
DBLP 4,246 514 178.7 25,159 Vi () || i () e
OpenData | 15,636 31,901 | 86.4 179,830 DBLP 0.83 211 0.83 11
Twitter 27,204 151 22.6 72,910 OpenData | 18.6 101 186 1025
WDC 1,014,369 | 10,240 | 30.6 328,357 Twitter 0.7 >18 0.7 10

WDC 147 1062 147 885

» KOIOS achieves at least 5X speed up over the SOTA on massive data lakes.

* Even better speedup for medium and large queries compared to the SOTA.



Table Union Search,

F. Nargesian, E. Zhu, K. Pu, R. Miller, B EYO N D J O | N

VLDB, 2018.

TABLE UNOIN DISCOVERY  DIRECTORY STRUCTURE
-HII iraten

Water

--. Food Resilience
----

SELECT *

FROM Query Energy
UNION ~

SELECT ?7? .

FROM ?? Climate

UNION
?27..

Food Safety

Food Production, ..

Organizing Data Lakes for Navigation,
F. Nargesian, K. Pu, E. Zhu+, SIGMOD, 2020.
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A SEARCH ENGINE ON OPEN DATA

Q smart city infrastructure

F. Nargesian+, VLDB, 2021.

Open Data Link

Showing joinable ta

11 results
Broadband Adoption and Infrastru
Broadband Adoption and Infrastru

Broadband Adoption Basic Indical

Broadband Adoption and Infrastructure by Congressional District

Updated: 2020-06-23720:06:09.000Z

Find similar datasets Find unionable tables

(containment: 1.00) Description Data PreVieW Click a column to find tables joinable on that column.
Broadband Adoption Basic Indicat Key indicators of broadbaer adoption, OID Congressional Home Mobile NoInternet  No Home No Mobile NoHome NoMobile Co
(containment: 1.00) service and infrastructure in New York District Broadband  Broadband  Access Br Br Fib
City by Congressional District</p> A : A : A A ; A
dband Ad A inf ption (Per A ISF
Broadband Adoption and Infrastru q A
<b>Data Limitations:</o> Data accuracy (Percentage (Percentage of (Percentage (Percentage by Quartile by Quartile
Broadband Adoption and Infrastrt is limited as of the date of publication and of of Households) - of of
) by the methodology and accuracy of the Households) Households) Households) Households)
Broadband Adoption and Infrastrt L "
original sources. The City shall not be
Broadband Adoption and Infrastr. liable for any costs related to, or in
reliance of, the data contained in these
Broadband Adoption and Infrastri
P datasets. o 3 079 075 012 021 0.25 Low Medium 4
Internet Master Plan: Broadband / . Connected High
Publisher Connected
Internet Master Plan: Broadband / The Mayor's Office of the Chief )
Technology officer (contact) 1 5 0.68 0.78 017 0.32 0.22 Medium Low 4
High Connected
Categories Connected
« infrastructure 2 6 0.73 0.76 0.16 0.27 0.24 Medium Medium 5
« politics Low Low
. Connected  Connected
Taae 3 7 0.65 075 0.22 0.35 0.25 High Medium 8



MORE ON DATASET DISCOVERY



FEATURE DISCOVERY

* Given a target column and a join column from a query table, find
joinable tables s.t. the table contains a column that is correlated with
the target column.

X

2 correlated
4

B

|l w N

Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD, 2021.
68



FEATURE DISCOVERY

 Evaluate correlation measures on the synopses that enable the
reconstruction of a uniform random sample of the joined table.

* How to find attributes that are minimally correlated with sensitive
attributes and highly correlated with the target attributes?

* The synopses may be biased towards the majority group

Indexed synopses on
pairs of categorical and
numerical attributes

cl o TN
» — O —

Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD,
2021. 69



OTHER WORKS

* Table Discovery in Data Lakes

Table Discovery in Data Lakes: State-of-the-art and Future Directions, SIGMOD, 2023.

e Goal-Oriented Data Discovery

METAM: Goal-oriented Data Discovery, ICDE, 2023.
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OUTLINE

DATASET DISCOVERY: QUERY ANSWERING:

Syntactic and Semantic Join Search, Random Sampling

Feature and Slice Discovery over Union of Joins 7
,/

FAIRNESS-AWARE DATA
ACQUISITION:
Data Distribution Tailoring

73



DISTRIBUTION-AWARE DATA INTEGRATION

* A model is not bad overall it performs poorly on certain slices of data.

 Data debiasing

~__ e N
== train | early detection
oy of breast cancer N
~ . “ “‘
N breast cancer S
% %h/
% 7
%, O S—
%,
%%"6@ random \ummd ‘/
/0/7 test set UU Responsible Data Integration: Next-generation Challenges,

F. Nargesian, A. Asudeh, H. V. Jagadish, SIGMOD 2022.
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(GROUP REPRESENTATIVENESS

* Groups: (in)dependent variables, protected groups, ([ carly detection |
f breast cancer
class labels, rare outcome groups, etc. traVv oI
e Distribution - Oi}'
* What. counts of proportions over groups - g
« How. model debugging, data coverage [Asudeh+2018] test

1K monitoring data in Chicago with at
e Data least 30% label=positive, and at least

_ 20% African American patients
* Where. crowdsourcing, data lakes, data markets
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DATA DISTRIBUTION TAILORING (DT)

* How to construct a dataset that satisfies group distribution
requirements from multiple sources in a cost-effective manner?

* Data debiasing: at the data acquisition step of data science pipeline

Tailoring Data Source Distributions for Fairness-aware Data Integration,

F. Nargesian, A. Asudeh, H. V. Jagadish, VLDB 2021.

Towards Distribution-aware Query Answering in Data Markets,

A. Asudeh, F. Nargesian, VLDB 2022. 76



QUERY, DATA, COST MODELS

e Query: counts specified over some groups

* Tuple-at-a-time access to a source
e Sources return relevant data

* Paying a cost for samples: monetary, labeling, computation, etc.

1K monitoring data in

i fw OT i Chicago with at least 30%
- T ‘. label=positive, and at least
SS 20% African American
patients

Crowd-
sourcing

data sources target dataset
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DATA MIARKETPLACES

Data Consumers Data Providers
f 11 @Consumer 1 ™~ \i |
r i; [?;Provider 1 +:—>‘ @@@@
I T
) i ) 4 Data Lake 1
Journallsm :&:()nsumer ) :; - 5 - i
i ) —> D - !
| -
. E nEn & Provider m|+——
/ e " T_
" |1 @consumer n = ]

Data Science|

Database m




DATA DISTRIBUTION TAILORING (DT)

Group Count i i Sources

Requirements |I|| i

Problem. Given sources with their costs,

target e
dataset |.

| source selection and count requirements on the groups,
v select a sequence of sources to sample, s.t.
sampling and group " . t fulfilled hile th
dentification count requirements are fulfilled, while the
v expected total query cost is minimized.
updating target
dataset
v L .
updating group agg Are statistics about groups of interest
knowledge base available from data sources?
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DT: DIRECT OPTIMIZATION

* Direct solution by defining the cost function and solving a DP problem

* Not practical for realistic settings
* Pseudo-polynomial time and space complexity

Package queries: efficient and scalable computation of high-order constraints, Brucato
M. et al., VLDBJ 2018. -



DT: COST FUNCTION

PJ: prob of obtaining G, from D, prob of G;

F(Q): expected cost of a target with counts Q from D;

{ { %

cost of sample
cost if D; @iter: C + z P]F @+ 1 - z P])F(Q)
j= 1Q/0/ / J=1,Q;>0

exp. remaining cost if a exp. remaining cost if sample
sample of G; is obtained. does not help with the target

\ J

expected remaining cost

13



A DYNAMIC PROGRAMMING SOLUTION

cost groups Query: G;:1and G,: 1
F(1,1): the cost of a target with G;: 1and G,: 1
G |G |G
GZ
D,|2 [0.2]038 .
sources 1 —
D,|3 |04 |06 F(0,Q)%0 | F(0,1)

F(1,0)< F(1,1) v

©

cost of obtaining a tuple of G, from D;: 2/0.2=10

cost of obtaining a tuple of G, from D,: 3/0.4=7.5 select D;: 2 +0.2 F(0,1) + 0.8 F(1,0)

lect D,: 3+ 0.4 F(0,1) + 0.6 F(1,0
F(1,0) = min(2/0.2, 3/0.4) = 7.5 < D, Select Y 1) (1,0

F(0,1) = min(2/0.8, 3/0.6) = 2.5 <D, F(1,1) = min(2 + 0.2 F(0,1) + 0.8 F(1,0),

3+0.4F(0,1) + 0.6 F(1,0)) = 8.4 < D,

15



DT: COST FUNCTION

PJ: prob of obtaining G, from D,
F(Q): expected cost of a target with counts Q

F(Q) = mingy, G+ ) PE@+0- ) BIFQ

[
I
I
Query: G;: 1and G,: 1

Sources: D; and D,




STRATEGY: KNOWN DISTRIBUTIONS

* Round-robin with priority strategy on groups %
* Prioritize minority group (\G)/ \@
5

* rare and expensive to find

* Priority of G;:
prob of Gj in Dj
D,; = argmax —ostofD. < >
VD; ! ’
- Cn

priority(G]-) = cost per sample of G;

if select D*j
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DT ANALYSIS

* Prioritize minority group

 Result. Optimal for two groups and equi-cost model.

85



OPTIMAL EQUI-COST BINARY

* Find the optimal source for each group: D, and D,,

oritv(G.) =
priority(G;) prob of G; in D,;

D, has 20% of@ and 80% of@ D., has 5% of@ and 95% of@

select D,y select D,,
00000 L allg

86



GENERAL NON-BINARY DT: ANALYSIS

Cost-

] -
effective - - Cost-

] source of == - cffective
Cost | n G - + ...t - source
effective 2 %

@ of G,
source
of G4
Cost of fulfilling count Cost of fulfilling count + 4 Cost of fulfilling count
requirements of G; requirements of G, requirements of G,,

* Modeling the problem as m instances of the coupon collector’s
problem, where every instance j aims to collect samples from the
group G;.



COUPON COLLECTOR’S PROBLEM

e Given n coupon types, how many coupons do you expect you need to
draw with replacement before having drawn each coupon at least
once?

* Assume all coupons are equally likely.
» After one sample, we have seen one coupon.

» After two samples, we have seen the same coupon twice with
o1 . . .. n—1
probability - and two different coupons with probability —

* [t is shown that the expected number of samples needed grows as

O(nlogn)

Randomized algorithms, Motwani and Raghavan.



DT ANALYSIS

* Prioritize minority group
 Result. Optimal for two groups and equi-cost model.

* Expected cost of m-groups W|th arbitrary cost

N]
lp ~ #ofgroupjinD
N]

;@“ "N -

* based on the coupon collector’s problem [Motwani and Raghavan’1995]

# of group j in D,

91



EVALUATION: KNOWN DT

Random Costs - Minority

Cost
1031 . CouponColl
N Baseline
I Upper Bound
# Samples
2| CouponColl
10 —— Baseline
101 4

10

200 400 600

#Data Sources

800

1000

4 x 103

3x103

2x103

L 103

6 x 102

Cost

4x103

3x 103

2x 103

103

Equal costs
Cost
B Binary Optimal
s Random Sampling
#Samples
--=- Optimal
—— Baseline

1]

* Having access to more sources incurs lower DT cost.
* Random source selection is only suitable when no group is a minority in the

repository!

20

40

50
% Sources with G; as Majority

4x103

3x 103

2x 103

_103

#Samples
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DT : UNKOWN DISTRIBUTIONS

e Multi-armed Bandit (MAB)

* Given a time horizon T, a centralized planner sequentially chooses actions,
receiving stochastic reward from unknown distribution

93



MULTI-ARMED BANDIT

* Sequential; exploration/exploitation tradeoff

* narms; each arm [ is associated with an unknown probability

distribution v; with mean 6.

Bandit| |Bandit] |Bandit| |Bandit
* An agent selects an arm

. . (o)
at every iteration. 0%

current current current current

success sSuccess sSuccess success

rate rate rate rate
Next Fig: T :

L : Towards Data Scie

choice? "®

Ce

The Multi-Armed Bandit Problem: Decomposition and Computation.
Katehakis and Veinott, 1987.



MULTI-ARMED BANDIT

* r. = R(a;): reward of a, taken from v,
E[R(a; =T})] =6,

* Goal is to maximize the expected cumulative reward
* A=2a,-,ap sequence of actions taken by an agent
« A"=a,, ,ar :optimal strategy

* Regret for not taking the optimaTI action

L(4) = E[) (6; —R(a)

0;: optimal expected reward at t



MAB STRATEGIES

* Exploitation: query each data set once and focus on the source with
maximum reward
* Works well with large # sources or when distributions vary greatly

* Exploration: choose a source at random with equal budget chance
» Selection probability is inverse proportional to cost
* Works well when distributions are similar

* Upper Confidence Bound

A contextual-bandit approach to personalized news article
recommendation, Li et al. 2010.



UPPER CONFIDENCE BOUND

 Exploration/exploitation trade-off

» UCB favors exploration of sources with a strong potential to have an

optimal reward value.

D = argmaxR,(i) + U, (i)
VD;

* Hoeffding inequality
U (i) = (RT(i) - RJ_(i))

t: # samples, O; : samples taken from D,

2Int
0;

Confidence
Interval

~

True value
somewhere

Upper
Bound

29



DT : UNKOWN DISTRIBUTIONS

* Multi-armed Bandit (MAB)

* Given a time horizon T, a centralized planner sequentially chooses actions,
receiving stochastic reward from unknown distribution

e Goal: minimize regret
Regret(T) = OPT reward @T — DT reward @T

« Optimal regret is O(V/T).

98



EPS-GREEDY MAB FOR DT

* Explore with epsilon probability
e Sample a random source D,and update empirical ratios of groups in the Dy

e Otherwise, exploit

* Two-level policy with a frequentist DT Remaining count
* Group to prioritize / req of G
C;
Gy « argmaxg. Q-.min N
* Source to choose
b . G
«— argminp, ——
¢ ' ratio(G;)

empirical ratio
of Gj in Di

cost per
successful
sample

e Results. An e—gzrfedy strategy with exploration probability */Int /t attime t:

regret of O(T%/3log T'/?) at time T for equi-cost DT.

99



DATA ACQUISITION FOR ML

e Consumers query providers for data to enhance the accuracy of their
models.

* The task of the consumer is to identify a series of queries (P4, [ ), - - -
, (P,, 1,)) to obtain B records, where P; and I; being the predicate and
the number of requested records in the i-th query.

* The objective is to improve as much as possible the accuracy of
consumer’s ML model on test data.

Data Acquisition for Improving Machine Learning Models, Li et al., PVLDB, 2021.
Selective Data Acquisition in the Wild for Model Charging, Chai et al., PVLDB 2022

100



DATA ACQUISITION FOR ML

Data Provider

T
<(P1111)I"'1(PZIIZ))

t

Predicates and

number of records

(e.g. 30 records 10000 < salary
< 20000 A 20 < age < 30)

Sequential Predicate
Selection

—>{ Utility Estimation and

pd
~

Budget Allocation

t

\'4
i %g = B

traindata++ M —> M’ test data

Data Consumer

'T20C ‘9Q1Nd “1e 39 17

‘S|9pOIA 8uluiea aulyoe|N Suiroidw| Joj uonyisinbay eleq
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OUTLINE

DATASET DISCOVERY: QUERY ANSWERING:

Syntactic and Semantic Join Search, Random Sampling

Feature and Slice Discovery over Union of Joins 7
,/

FAIRNESS-AWARE DATA
ACQUISITION:
Data Distribution Tailoring

102
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DATA BIAS IN ML PIPELINE

Acquisition / Recording

Extraction/Cleaning/Annotation

Integration/Aggregation/Representation

Fairness-aware Data
Preparation Approaches

Data set
Training/
5 Analysis/

A Algorithm
i Design

Biases in Data

Preprocess In-process
Interventions Interventions

Nima Shahbazi, et al. CSUR, 2023.

Model/Algorithm

Fairness

Interpretation
—_—> /

A
1
1
1
1
1
1
i
1

Visualization

Postprocess
Interventions



UNDERLYING DISTRIBUTION REPRESENTATION

 Standard Assumption of Al: training data is i.i.d random samples
drawn from the distribution that query points follow
* Not always easy to satisfy
* Not easy to verify

* Underlying distribution is usually unknown
* Challenging to verify that collected data is unbiased



NOT EASY TO SATISFY

 Even if selected randomly SAMPLING BiAS

e Suppose surveys sent out to To SLRNEYS
carefully chosen random B NO, | Tos5 THEM INTHEEIN

sample

e Only a fraction of surveys

returned " WE. RECEINED 500 RESPONSES AND
FOUND THAT PEOPLE LOVE RESPONDING
TO SLVRNENS®
sketchplamations

106



GROUP REPRESENTATION

* The need to show adequate consideration of minority/rare groups, to
ensure reliable outcomes for such groups



UNBIASED AND INFORMATIVE FEATURES

* An Al data set: a collection of attributes (features) x = {x ... x;, }
* may also contain one (or more) target attribute (labels) y
* sensitive attributes s such as race and gender

e Often challenging to collect sensitive attributes

» Example: users of a shopping website
» Usually do not collect the sensitive information of the users



INFORMATIVE FEATURES

* Performance of ML models depends on the set of attributes a data set
contains
* E.g., in classification predict the target variable using the observations

—> High correlation between x and y



UNBIASED FEATURES

e Sensitive attributes are used to specify (demographic) groups
considered for fairness
* E.g.: race={White, Black, Hispanic, others}

e [ow correlation between the features and the sensitive attributes

* |deally x and s should be independent



COMPLETENESS AND CORRECTNESS

* Always important, even more critical for responsible Al

* incomplete and incorrect data typically hurt minorities, further increasing the
data bias in such cases.

e Example
* Two groups (minority and majority); a small portion belong to the minority
* A simple task: compute average
* An incorrect majority value does not significantly impact the average
* Anincorrect minority value may significantly skew the average



SCOPE OF USE AUGMENTATION

* Collecting data that fully satisfies all requirements is often not possible in
practice.

* Some of the requirements may conflict with others
* Group representation requirement may conflict with i.i.d sample requirement

* Every data set has a limited scope of use. No data set is good for all tasks.

* To ensure transparency:

* embed data with the meta-data and information that describe its collection
process, its limitations, and its fitness for use



SAMPLING OVER DATA LAKES?



UNIFORM AND INDEPENDENT SAMPLING

ML on integrated data is inherently expensive

* Luckily, in many tasks (e.g. AQP and statistical learning), a random
sample suffices for analysis

e Samples should satisfying Underlying Distribution Representation
and Group Representation requirements



UNIFORM AND INDEPENDENT SAMPLING

* Sampling a single source
« Stratified sampling to ensure that minority groups are sufficiently
represented in the sample
* Given a set of sensitive attributes and an integer parameter k, a stratified

sampling guarantees at least k tuples are sampled uniformly at random from
each group. When a group has fewer than k tuples, all of them are retained.

Join on Samples: A Theoretical Guide for Practitioners, Huang et al., PVLDB,
2019.
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ML ON NORMALIZED DATA

* Predicting the return flag of an item shipped to a customer using
features of both the item and another item shipped to the same
customer requires (self-) join

Label Features

Custld Region Total Discount Flag2 Total2 Discount2
1 10 2 100 0.2 0 20 0.5
0 20 1 200 0.0 0 100 0.1

0 20 1 500 0.1 0 300 0.2
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ML ON NORMALIZED DATA

SELECT
11.1_returnflag, n_regionkey, s_acctbal,
11.1_quantity, 11.1_extendedprice, 11.1_discount,
11.1_shipdate, ol.o_totalprice, ol.o_orderpriority,
12.1_quantity, 12.1_extendedprice, 12.1_discount,
12.1_returnflag, 12.1_shipdate
FROM nation, supplier, lineitem 11, orders ol, o
customer, orders 02, lineitem 12 Jomlng 7 TPCH tables
WHERE s_nationkey = n_nationkey
AND s_suppkey = 11.1_suppkey
AND 11.1_orderkey = o1.o_orderkey
AND o1.o_custkey = c_custkey
AND c_custkey = 02.0_custkey
AND 02.0_orderkey = 12.1_orderkey;
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[ID SAMPLING OVER JOIN

 Training a classifier using SVM on a join over 7 tables
 Full join takes more than 12 hours to compute.
* Training runs forever without down-sampling.

. A B CDEF GH

D N 12 2 1 2 11 2
_—» |2 1 2 2 3 3 2 2

3 45 3 2 3 3 4

Training

Accuracy = 80%

Evaluation

N
Al w| N| -
Al I NN

Random Sampling over Joins Revisited, Zhao et al., SIGMOD, 2018. s



[ID SAMPLING OVER JOIN

* Given T; and T,, a sampling algorithm
A is iid, if tuples returned by A all have —
the same sampling probability and the
appearances of two tuples in the S
sample are independent events. C
6 2 1
6 2 2
7 3 7 3 3
7 3 4
R(A,B) B S(B,C) =R(A, B,C)  |———
Goal: sample t € R with probability% 3 6

119



[ID SAMPLING OVER JOIN

* Sampling cannot be pushed down in join
sample(R) D} sample(S) # sample(R P §)

* If independent samples are taken from R and S, the result of joining
uniform samples is a uniform sample of the join but not an
independent one.

* Consider independent Bernoulli samples with probability p from R and
S
° P(tl, tz) = pz, t;1€R and t,ES
° P(tl, tlz) =p,HLER and tlz €S
e Uniform and dependent

120

On Random Sampling over Joins, Chaudhuri et al.,

SIGMOD, 1999.



lID SAMPLING OVER JOIN

* Two-table Jomn On Random Sampling over Joins, Chaudhuri et al., SIGMOD, 1999.
Random Sampling from Databases, Olken, Ph.D. Dissertation,
1993.
e Multi-way foreign key joins
Join Synopses for Approximate Query Answering, Acharya et al., SIGMOD,

1999.
* Ripple join (uniform but correlated samples)

A scalable hash ripple join algorithm, Luo et al., SIGMOD

20Q2.
* Wander join (independent but non-uniform samples)

Wander Join: Online Aggregation via Random Walks, Lo et al., SIGMOD
2016.
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lID SAMPLING OVER GENERIC JOIN PATHS

* Randomness: return tuples from a join path J =T, D ... D] T, with
probability 1/|J|

* Independence: generate sampled results continuously until a certain
desired sample size k is reached

Random Sampling over Joins Revisited, Zhao et al., SIGMOD, 2018. s



[ID SAMPLING OVER JOIN

3
A,B A,B PT‘ -
S 5 5 iy
A join path is modelled as DAG 111 111 112 Ry
* nodes: tuples M\
. .edges:JomaI?I? tuples | 5 B LB 18 L BC
Weight w(t): # join results starting frc 13 214 2|5\/ 216 R
tuple t 1 ?
Sample proportional to weight Pr= 3

Random Sampling over Joins Revisited, Zhao et al., SIGMOD, 2018. s



[ID SAMPLING OVER JOIN

1
AB A B Pr =3
A join path is modelled as DAG > 1)1 > 1|1 > \/1|2 R4

* nodes: tuples N
* edges: joinable tuples Reject wit -
1 B,ﬁ/ 1 BA 1 B¢

B
Weight w(t): # join results starting fro>
tuple t 1]3 2|4 2|5\/1 216 R,

Sample proportional to weight Pr=3

Use a surrogate weight W (t) if w(t) is not
available. W (t): upper bound of w(t)

WO -Eyreene (')
w(t) Ry

Reject with prob.

Return when leaf



UNION OF JOINS
— T

customer order lineitem order

IR HER HEE NEEE

| SQL
O/IR} EEEEEE NEE D
X X .

. N

HEl BN BN e
X D4 X .

. N
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JOINS AND UNIONS ARE EXPENSIVE.

fas  EEEENEEE

 —

dCcuracy

r'-- training =80%
fp= llllllll
| e
—_—
guery results

approximate
]
fiSils -~ EEEEEEEE
 —

query answering

What is the average age of female
politicians in each state?
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RANDOM SAMPLING OVER UNION OF JOINS

* Fortunately, no need to compute full results.

* A uniform and independent sample can achieve a bounded error

* Robust for any models

* Problem. Given a set of joins L={J,, ..., J,}, let U be the discrete space of set
union U =J,U... UJ,, return N independent samples S from U, without
performing join and union, s.t.

P(tes) =

U1 U U Jyl

127
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RESPONSIBLE DATA ACQUISITION

* Multi-modal dataset construction (visual analytics)
e Uniformity across all modalities

» Data subset selection (coreset construction) under distribution
constraints
* Data subset selection with K-coverage, group representation, and diversity
* Coresets over join paths
* Coresets over noisy, dynamic, and stream data

 Auditing existing data management algorithms
* Data cleaning and schema mapping

138



CORESET CONSTRUCTION

e Coreset construction under distribution constraints
* Data subset selection with K-degree, group representation, and diversity

* Coresets over join paths
* Coresets over noisy, dynamic, and stream data

social network ImageNet NYC taxi data

139



AUDITING DATA MANAGEMENT PIPELINES

e Synergies and transparency and fairness

* Auditing data cleaning techniques
* Entity matching

* Schema mapping
* How bias is propagated through join and union operations?

* Leads to developing new algorithms




HUMAN-CENTRIC DATA ACQUISITION

* The design of a domain-specific programming language for data lake
programming

* Syntax and semantics of operators and programming constructs
* Type checking
* |terative algorithms and programming language design

Source ——Mapping— Target

(%) Infemed Declared (1o Data Lakes
T T
52 O
SaOf fA
i ol Loki Repository GitHUb

* Dialogue-based query answering over data lakes
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