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DATA

• AI is ubiquitous. 
• Data-centric AI: focus from big data to good data. 
• Open data repositories and data markets have become prevalent. 



Romania UK USACanada

WDC Web Table 2015
(English Relational 

Subset)

51,3633,562 247,07435,675
Data 

Marketplaces

Data repositories  as first-class citizens.
• Sources: open governments, web  pages, enterprises, and data markets
• Large number of datasets
• Disconnected and heterogeneous datasets
• Topics vary 50,820,165
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$$$$$
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• Improving governments
• Empowering citizens
• Solving big public problems

• Interesting computational problems



WDC Web Table 2015
(English Relational 

Subset)
Data 

Marketplaces

$$$$$

Goal: query answering and dataset construction: 
• Distribution and representativeness: model fairness and accuracy
• Efficient, scalable, cost-effective  solutions

50,820,165

1K breast cancer data in 
Chicago with at least 30%
label= positive, and at 
least 20% African 
American patients

train

test
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UK USACanada

51,363 247,07435,675

Romania

3,562

early detection
of breast cancer



ABOUT ME

• Assistant Professor of CS, University of Rochester
• Research: data for AI and scientific time-series management

• Education
• Undergrad in computer engineering and MSc. in AI, Tehran, Iran
• PhD -> MSc. in CS, University of Ottawa
• PhD in CS, University of Toronto

• Dataset discovery and integration; autoML

• Worked at clinical informatics research group of McGill University; IBM research 
internships
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LOGISTICS

• Many additional references in the slides
• Questions any time during the talk 

• The material based on two tutorials: 
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Data Lake Management: Challenges and Opportunities, 
F. Nargesian, E. Zhu+, VLDB, 2019.

Responsible Data Integration: Next-generation Challenges,  
F. Nargesian, A. Asudeh, H. V. Jagadish, SIGMOD 2022 and WSDM 2023.
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DATASET DISCOVERY: 
Syntactic and Semantic Join Search, 
Feature and Slice Discovery

FAIRNESS-AWARE DATA 
ACQUISITION: 
Data Distribution Tailoring

OUTLINE

QUERY ANSWERING:
Random Sampling 
over Union of Joins



DATASET DISCOVERY
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keyword search
Data Lake Management: Challenges and 
Opportunities 
F. Nargesian, E. Zhu+, VLDB, 2019.



SELECT ?? 
FROM ?? JOIN ??
ON ?? = ?? 
UNION
SELECT ?? 
FROM ?? JOIN ?? 
UNION
…

WDC Web Table 2015
(English Relational 

Subset)

50,820,165

Geo Date Fuel Type Pop Avg. Age

… … … … …

Data 
Marketplaces

?
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UK USACanada

51,363 247,07435,675

Romania

3,562

Union of Conjunctive Queries



SELECT ?? 
FROM emission e JOIN ??
ON e.Geo = ?? 
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emission

Geo Date Fuel ktCO2 Sector …

Barnet 2015 electricity 130 Domestic

City of London 2015 diesel 200 Transport

Camden 2014 coal 125 Domestic

… … … … …

citydata

query 
column

SEARCH BY JOIN
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SELECT * 
FROM emission e JOIN citydata d
ON e.Geo = d.Area

emission

Geo Date Fuel ktCO2 Sector …

Barnet 2015 electricity 130 Domestic

City of London 2015 diesel 200 Transport

Camden 2014 coal 125 Domestic

… … … … …

citydata

Geo Date Fuel ktCO2 Sector Pop Avg_age F.Unemp Unemp …

Camden 2014 Coal 125 Domestic 142500 36.4 - -

City of London 2015 diesel 200 Transport 242500 43.2 62.9 4

Barnet … … … … NULL NULL NULL NULL

… … … … …

Area Pop Avg_age F.Unemp Unemp …

City of London 8800 43.2 - -

Camden 242500 36.4 62.9 4

Cambridge 389600 37.3 66 8.5

…

Geo Date Fuel ktCO2 Sector …

Barnet 2015 electricity 130 Domestic

City of London 2015 diesel 200 Transport

Camden 2014 coal 125 Domestic

… … … … …



SYNTACTIC JOIN DISCOVERY

LSH Ensemble: Internet-Scale Domain Search, 
E. Zhu, F. Nargesian, K. Pu, R. J. Miller, VLDB, 2016.  
JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data 
Lakes, E. Zhu, D. Dong, F. Nargesian, PU, Miller, SIGMOD 2019.



• Columns as sets

• Columns as multisets
• Related work [Bessa+POD’23, Santos+ICDE’22, 

Santos+SIGMOD’21, Fernandez+ICDE’19] 

Overlap Q, X = 𝑄 ∩ 𝑋

Containment Q, X =
𝑄 ∩ 𝑋
|𝑋|

Jaccard Q, X =
𝑄 ∩ 𝑋
|𝑄 ∪ 𝑋|

JOINABILITY MEASURE

15

Data Lakes

Join Result

X
Q



JACCARD VS. CONTAINMENT

• Suppose there are the following two columns in the repository
Provinces = {Alberta, Ontario, Manitoba} 
Locations = {Illinois, Chicago, New York, Nova Scotia, Halifax, California, San 
Francisco, Seattle, Washington, Ontario, Toronto}

• Consider the following query columns
Q = {Ontario, Toronto} 

• Top-1 joinable columns based on Jaccard? Top-1 joinable columns based on 
containment? 

Jaccard(Q,P) = 1/4, Containment(Q,P)=1/2
Jaccard(Q,L) = 2/11, Containment(Q,P)=1
Jaccard is biased towards smaller columns
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Containment Q, X =
𝑄 ∩ 𝑋
|𝑋|

Jaccard Q, X =
𝑄 ∩ 𝑋
|𝑄 ∪ 𝑋|



DATASET DISCOVERY

• Threshold-based search: Given a query Q and a joinability measure J, 
find columns X s.t.  J(Q,X) >= t*.
• Top-k search: Given a query Q and a joinability measure J, find k 

columns X s.t.  J(Q,X) >= t*.
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• Problem. Given a query Q and containment threshold t*, find columns X s.t.  
containment(Q,X) >= t*.

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑄, 𝑋 =
𝑄 ∩ 𝑋
|𝑄|

• Existing technique for containment search results in low recall for skewed column 
size distributions [SrivastavaLi2015]. 

THRESHOLD-BASED CONTAINMENT SEARCH
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Query column:
Q = {Boston, Toronto, BigApple} 
Columns in a data lake: 
Geo = {Edmonton, Toronto, Appleton}
Locations = {Chicago, Boston, Toronto, Seattle, NYC}
...
Search with t* = 0.5 returns Locations and not Geo. 

Canadian OD Web Tables



• Deals with data volume and skew!
• First phase: columns are partitioned based on the distribution of column  

cardinality. 
• Second phase: construct a MinHash LSH index for each partition and parallel 

search 

• Accurate over columns whose sizes are skewed (e.g., power-law dist.)

LSH ENSEMBLE

19

[l1, u1) [l3, u3)[l2, u2)

minhash 
LSH

minhash 
LSH

minhash 
LSH

data lake



• MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.

MINHASHING FOR JACCARD 
NEAREST NEIGHBOR SEARCH
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• Key idea: “hash” each column C to a small signature h(C), such that:
• (1) h(C) is small enough that the signature fits in RAM
• (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

• Goal: Find a hash function h(·) such that:
• If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
• If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Hash cols into buckets. Expect that “most” pairs of near duplicate cols 
hash into the same bucket!

MINHASHING
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MINHASHING

• Goal: Find a hash function h(·) such that:
• if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
• if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Clearly, the hash function depends on the similarity metric:
• Not all similarity metrics have a suitable hash function

• There is a suitable hash function for the Jaccard similarity: It is called 
Min-Hashing 
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MINHASHING

• Imagine the rows of the boolean matrix permuted under random 
permutation p

• Define a “hash” function hp(C) = the index of the first (in the permuted 
order p) row in which column C has value 1:

   hp (C) = minp p(C)

• Use several (e.g., 100) independent hash functions (that is, 
permutations) to create a signature of a column

23
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MINHASHING - EXAMPLE

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p
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MINHASHING - EXAMPLE

4

5

1

6

7

3

2

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p
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MINHASHING - EXAMPLE

Signature matrix M

1212

4

5

1

6

7

3

2

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p
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MINHASHING - EXAMPLE

Signature matrix M

1212

4

5

1

6

7

3

2

2nd element of the 
permutation is the first to map 
to a 1

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p
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MINHASHING - EXAMPLE

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2nd element of the 
permutation is the first to map 
to a 1

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p



29

MINHASHING - EXAMPLE

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2nd element of the 
permutation is the first to map 
to a 1

4th element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p
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MINHASHING - EXAMPLE

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the 
permutation is the first to map 
to a 1

4th element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) Permutation p



MINHASHING PROPERTY
• Choose a random permutation p
• Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 
• Why?
• Let X be a col (set of shingles), yÎ X is a shingle
• Then: Pr[p(y) = min(p(X))] = 1/|X|

• It is equally likely that any yÎ X is mapped to the min element
• Let y be s.t. p(y) = min(p(C1ÈC2))
• Then either:  p(y) = min(p(C1))  if y Î C1 , or
     p(y) = min(p(C2))  if y Î C2

• So the prob. that both are true is the prob. y Î C1 Ç C2

• Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2) 
31
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FOUR TYPES OF ROWS
• Given cols C1 and C2, rows may be classified as:

    C1 C2

   A 1 1
   B 1 0
   C 0 1
   D 0 0
• a = # rows of type A, etc.

• Note: sim(C1, C2) = a/(a +b +c)
• Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 
• Look down the cols C1 and C2 until we see a 1
• If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
32
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SIMILARITY OF SIGNATURES

• We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
• Now generalize to multiple hash functions

• The similarity of two signatures is the fraction of the hash functions in which 
they agree

• Note: Because of the Min-Hash property, the similarity of columns is the 
same as the expected similarity of their signatures
• It can be shown that hp(C1) = hp(C2) is an unbiased estimator of sim(C1, 

C2)
• An estimator is unbiased if its expected value is equal to the true value 

of the parameter.
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MINHASHING - EXAMPLE

Similarities:
              1-3      2-4    1-2   3-4
Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010
1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation p



MINHASHING - EXAMPLE
• Pick K=100 random permutations of the rows
• Think of sig(C) as a column vector
• sig(C)[i] = according to the i-th permutation, the index of the first row 

that has a 1 in column C
  sig(C)[i] = min (pi(C))

• Note: The sketch (signature) of document C is small  ~500	𝐾 bytes!

• We achieved our goal! We “compressed” long bit vectors into short 
signatures

35



• MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
• Each column is represented with one or more minhash values.

12, 10

12, 2, 4

1, 12, 9, 7, 5, 90

MINHASHING FOR JACCARD 
NEAREST NEIGHBOR SEARCH

37

X1

X2

Xn

.

.

.

hash values of set elements
Pr[minhash(Xi) = minhash(Xj)] 
= Jaccard(Xi, Xj) 

12, 10

12, 2, 4

1, 12, 9, 7, 5, 90

minhash of set
hash func. h(x)



• MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
• Each column is represented with one or more minhash values.

MINHASHING FOR JACCARD 
NEAREST NEIGHBOR SEARCH

38

X1

X2

Xn

.

.

.

Pr[minhash(Xi) = minhash(Xj)] 
= Jaccard(Xi, Xj) 

Jaccard(Xi, Xj) ~ 
# colliding minhash / hash funcs.

10 13 17 10 34 10

12 11 2 4 6 7

1 12 9 7 5 90

signature: k minhash



• MinHash LSH [Broder97, Indyk98]: an index for R-near neighbor based on Jaccard.
• Each column is represented with one or more minhash values.

SKETCHING

39

10 13 17 10 34 10

12 11 2 4 6 7

1 12 9 7 5 90

.

.

.

10 12 1

13 11 12

17 2 9

10 4 7

34 6 5

10 7 90

.

.

.

.

minhash
signature

set/col.

X1

X2

Xn

.

.

.

signature: k minhash requires linear scan!

query Q



• If we were to use Jaccard
• Similar sets: similar signatures [Broder97, Indyk98]

• Hash bands into buckets 
• Columns hashed to same bands are 
   potential candidates for joinable cols.

• Post-process candidates to find 
cols. with similarity > threshold

LOCALITY SENSITIVE HASHING (LSH)

40

D1     D2     D3    D4    D5    D6    D7

D2, D7 D6buckets

r minhash 
values

b bands 

query Q and 
Jaccard 
threshold

joinable candidates



• Problem. Given a query Q and containment threshold t*, find columns X s.t.  
containment(Q,X) >= t*.

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑄, 𝑋 =
𝑄 ∩ 𝑋
|𝑄|

THRESHOLD-BASED CONTAINMENT SEARCH

41



Jaccard Q, X = !∩#
|!∪#|

 

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝑄, 𝑋 = !∩#
|!|

𝐽 𝑄, 𝑋 =
𝐶 𝑄, 𝑋 . 𝑄
|𝑄 ∪ 𝑋|

=
𝐶 𝑄, 𝑋 . 𝑄

𝑋 + 𝑄 	− 𝐶 𝑄, 𝑋 . 𝑄

INDEX A PARTITION

42

Partition
[l, u)

LSH 
index cols. X with 

Jaccard(Q,X) >= s* remove old and new 
false positives

Jaccard threshold
s*:

cols. X with 
Containment(Q,X) >= t*

containment 
threshold t*

threshold
conversion 

query Q

new 
false positives

Ja
cc

ar
d

containment

𝑠∗ =
𝑡∗

|𝑋|
|𝑄| + 1 − 𝑡

∗

not constant

𝑠∗ =
𝑡∗

|𝑢|
|𝑄| + 1 − 𝑡

∗

largest col. size in partition 

time to process false positives

TContainment = 
TJaccard + Θ(correct result) + Θ(NFP)



• Query cost is determined by the partition with the highest # false positives.

Π∗ = 𝑎𝑟𝑔𝑚𝑖𝑛	(𝑚𝑎𝑥"#$#%𝑀$)

• Data partitioning as an optimization problem.
• The partitioning in which all Mi’s are the same. 

[l1, u1) [l3, u3)

PARTITIONING SCHEME

43

[l2, u2)

minhash 
LSH

minhash 
LSH

minhash 
LSH

execute query in parallel

# false positives in partition i

each partition has 
its own threshold



• Query cost is determined by the partition with the most # false positives.

Π∗ = 𝑎𝑟𝑔𝑚𝑖𝑛	(𝑚𝑎𝑥"#$#%𝑀$)

𝑀$ ≤ 𝑁&!,(! .
𝑢$ − 𝑙$ + 1

2𝑢$
	

• How to choose partition bounds l and u?

[l1, u1) [l3, u3)

PARTITIONING SCHEME
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[l2, u2)

minhash 
LSH

minhash 
LSH

minhash 
LSH

execute query in parallel

# false positives in partition i
# of columns in a partition

assuming uniform dist. of sizes



• Exists an optimal partitioning for any data distribution.
• For power-law distributions, the optimal partitioning 

can be approximated using equi-depth.

OPTIMAL PARTITIONING

45

Partition width

[l1, u1) [l2, u2) [l3, u3)

minhash 
LSH

minhash 
LSH

minhash 
LSH

Canadian OD Web Tables



• On WDC Web Table: ~263 million columns 

• Speedup is due to
• fewer false positive columns to process (higher precision)
• parallelization

QUERY PERFORMANCE

46

Algorithm Mean Query (sec) Precision Before Pruning (t*=0.5)

MinHash LSH 45.13 0.27

LSH Ensemble (8) 7.55 0.48

LSH Ensemble (16) 4.26 0.53

LSH Ensemble (32) 3.12 0.58



• Hierarchical Navigable Small World (HNSW) for vector search

• Practical and efficient index structure for a variety of distance measures

SEARCH ON VECTORS

47

Billion-scale similarity search with GPUs, J. Johnson et al., IEEE Transactions on Big Data, 2019

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small 
World graphs, Yu A. Malkov and D. A. Yashuin, IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 2020. 



• Containment may become ineffective for joining data in the wild.
• Dirty and semantically diverse data 

JOIN AND DIRTY DATA

48

Geo Date Fuel ktCO2 Sector …

Barnet 2015 electricity 130 Domestic

City of London 2015 diesel 200 Transport

NYC 2014 coal 125 Domestic

… … … … …

Area Pop Avg_age F.Unemp Unemp …

London 8800 43.2 - -

Big Apple 242500 36.4 62.9 4

Barnt 389600 37.3 66 8.5

…

SELECT * 
FROM emission e JOIN ? d
ON e.Geo ~ ?



SEMANTIC JOIN DISCOVERY

KOIOS: Top-K Semantic Overlap Set Search, 
P. Mundra, J. Zhang, F. Nargesian, N. Augsten, ICDE, 2023.   
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Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

Q

LA

Seattle

Columbia

…

SEMANTIC JOINABILITY MEASURE

C

LA

Blain

Appleton

…
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SEMANTIC JOINABILITY MEASURE

LA CharlestonSeattle Columbia Blaine BigApple

LA Blain Appleton MtPleasant Lexington WestCostC

.71
.7 .7

.99
.7

Q

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

sim(“LA”, “LA”) = 1.0
sim(“Seattle”, “WestCoast”) = 0.7
...



CHARACTER-BASED ELEMENT SIMILARITY

52

Blaine = {bla, lai, ain, ine}
BigApple = {big, iga, gap, app, ppl, ple}
Appleton = {app, ppl, ple, let, eto, ton}
Blain = {bla, lai, ain}
NewYorkCity = {new, ewy, wyo, yor, ork, 

   rkc, kci, cit, ity}

Jaccard(Blaine, Blain) = 3/4
Jaccard(BigApple,Appleton) = 1/3
Jaccard(BigApple, NewYorkCity) = 0

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C1 = {LA, Blain, Appleton, MtPleasant, Lexington,    

 WestCoast}
C2 = {LA, Sacramento, Southern, Blain, SC, Minnesota,
  NewYorkCity}

3-grams of elements Element similarity on 3-grams
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LA CharlestonSeattle Columbia Blaine BigApple

LA Blain Appleton MtPleasant Lexington WestCost

1

C

.7 .7
.99

Q

Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast}

sim(“LA”, “LA”) = 1.0
sim(“Seattle”, “WestCoast”) = 0.7
...

score(M) = 3.39

Matching 
M

SEMANTIC JOINABILITY MEASURE
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Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston}
C1 = {LA, Blain, Appleton, MtPleasant, Lexington, 
WestCoast}

• Maximum matching of the bipartite graph of Q and C with sim𝛼(., .) being any 
symmetric similarity function

𝑆𝑂 𝑄, 𝐶 = 𝑚𝑎𝑥< *
=*∈?

𝑠𝑖𝑚@(𝑞A, 𝑀(𝑞A))

• |𝑄 ∩ 𝐶| ≤ 𝑆𝑂(𝑄, 𝐶)

SEMANTIC OVERLAP

LA CharlestonSeattle Columbia Blaine BigApple

LA Blain Appleton MtPleasant Lexington WestCost

1

C

.7
.7 .7

.99
.7

Q
maximum
matching



TOP-K SEMANTIC OVERLAP SEARCH

• Semantic overlap ~ bipartite graph matching [Kuhan’1995]

• Problem. Given a column Q and parameter K, find the top-K columns based on 
the semantic overlap measure.   
• Search complexity: O(mn3), n is the size of sets and m is the number of sets

55



• Provably exact and efficient top-K search algorithm over large data lakes

data lake

KOIOS: FILTER-VERIFICATION-FILTER

56

incremental and 
cheap filtering

verification w/ 
termination  

top-K columns X 
candidates

order cols X based on 
upper bound of 
sem-overlap(X,Q) 

index

more 
filtering

• refinement of bounds
• a partitioning scheme for 

efficient filtering

• candidate ordering
• prematurely terminating 

verification

Query Q, 
threshold 𝛼   



𝑆𝑂 𝑄, 𝐶 = 𝑚𝑎𝑥& N
'&∈)

𝑠𝑖𝑚(𝑞$ , 𝑀(𝑞$))

• How to approximate bipartite matching scores and perform top-K search based 
on approximations? 

57

.5

LA CharlestonSeattle Columbia Blaine BigApple

SacramentoLA Southern Blain MinnesotaSC NewYorkCity

1

C
.8 .8 .85.99 .7

.9

.8

Q maximum 
matching M.7

SO(Q, C) = 4.49



𝑆𝑂 𝑄, 𝐶 = 𝑚𝑎𝑥& N
'&∈)

𝑠𝑖𝑚(𝑞$ , 𝑀(𝑞$))

• Upper-bound
𝑈𝐵 𝐶 = 𝑄 	.𝑚𝑎𝑥	𝑒𝑑𝑔𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	

• Expensive lower-bound
𝐿𝐵 𝐶 = 𝑠𝑐𝑜𝑟𝑒	𝑜𝑓	𝑎	𝑔𝑟𝑒𝑒𝑑𝑦	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
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SacramentoLA Blain MinnesotaSC NewYorkCity

1

C Southern
.99

.9
.85

LA CharlestonSeattle Columbia Blaine BigAppleQ

LB(C) = 3.74 < 4.49



INCREMENTAL BOUNDS

59

• Assume an index returns the next best edges for all sets descendingly: (e, sl+1)
𝑖𝐿𝐵 𝐶 =?𝑒𝑑𝑔𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛	𝑎	𝑔𝑟𝑒𝑒𝑑𝑦	“𝑝𝑎𝑟𝑡𝑖𝑎𝑙”	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑖𝐿𝐵*+" 𝐶 = 𝑖𝐿𝐵* 𝐶 + 𝑠*+"

SacramentoLA Blain MinnesotaSC NewYorkCityC Southern

1
.99

.9
LA CharlestonSeattle Columbia Blaine BigAppleQ

index

iLB(C) = 1 + 0.99 < 4.49
iLB(C) = 1.99 + 0.9 < 4.49



INCREMENTAL BOUNDS

60

• Assume an index returns the next best edges for all sets descendingly.
𝑖𝐿𝐵 𝐶 =?𝑒𝑑𝑔𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛	𝑎	𝑔𝑟𝑒𝑒𝑑𝑦	“𝑝𝑎𝑟𝑡𝑖𝑎𝑙”	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑖𝑈𝐵*+" 𝐶 = 𝑚. 𝑠*+" + 𝑖𝑈𝐵*+" 𝐶 , m = min Q − M , C − M

SacramentoLA Blain MinnesotaSC NewYorkCity

1

C
.99

Southern

LA CharlestonSeattle Columbia Blaine BigAppleQ
index

.85.85 .85

iUB(C) = 2.84 + 2*0.85 > 4.49



data lake

FILTERING

61

incremental and 
cheap filtering

verification w/ 
termination  top-K columns X 

candidates

index

more 
filtering

Query Q, 
threshold 𝛼   

• θlb : k-th largest observed iLB’s 
• Maintain a running top-K LB-list 
• Filter 𝑖𝑈𝐵(𝐶) < 𝜃*,
• Excessive updates of bounds

D1

θlb 

SO

D2
D3

D4
D5

Top-2 
search



data lake

PARTITIONING SCHEME

62

incremental and 
cheap filtering

verification w/ 
termination  top-K columns X 

candidates

index

more 
filtering

Query Q, 
threshold 𝛼   

C1
C2

.

.

C3
C4

.

.

.

C5
C6

.

.

.

m=1   m=2    … m=|Q|-1 

ordered 
by iLBl(Ci) 

sl+1

prune if iLBl(Ci) + m · s ≤ θlb • Dynamic partitioning of candidates during 
   the filtering phase.
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EARLY TERMINATION OF BIPARTITE MATCHING

LA CharlestonSeattle Columbia Blaine BigApple

LA Blain Appleton MtPleasant Lexington WestCostC

.71
.7 .7

.99
.7

Q

1

• Hungarian algorithm assigns and refines a labeling l: {Q}∪ {C}→R s.t.  

𝑙 𝑞 + 𝑙 𝑐 ≥ 𝑠𝑖𝑚 𝑞, 𝑐 , ∀𝑞 ∈ 𝑄, 𝑐 ∈ 𝐶
• Results. 𝑆𝑂 𝐶 ≤ ∑-∈ ) ∪{0} 𝑙 𝑥
• Terminate matching computing as soon as ∑-∈ ) ∪{0} 𝑙 𝑥 ≤ 𝜃*,.

1

0.99

1

1 10.9

0.8 1

0.8

0.99



• KOIOS achieves at least 5X speed up over the SOTA on massive data lakes.
• Even better speedup for medium and large queries compared to the SOTA. 

EVALUATION: SEMANTIC JOIN SEARCH

64

Dataset KOIOS 
Response 
Time (s)

SOTA 
Response 
Time (s)

KOIOS  Mem 
(MB)

SOTA  
Mem 
(MB)

DBLP 0.83 211  0.83 11

OpenData 18.6 101 18.6 102.5

Twitter 0.7 518 0.7 10

WDC 147 1062 147 885

comparison to SOTA

Dataset #Sets Max 
Card.

Avg. 
Card.

#Unique
Elements 

DBLP 4,246 514 178.7 25,159

OpenData 15,636 31,901 86.4 179,830

Twitter 27,204 151 22.6 72,910

WDC 1,014,369 10,240 30.6 328,357 

datasets statistics



BEYOND JOIN

65

Health
 Water
 Food Resilience

  Food Safety

  Food Production, …

Energy
…
Climate

SELECT *  
FROM Query
UNION
SELECT ?? 
FROM ?? 
UNION
??…

Geo Date Fuel Type Pop Avg. Age

… … … … …

TABLE UNOIN DISCOVERY

… … … … …

… … … …

DIRECTORY STRUCTURE

Table Union Search, 
F. Nargesian, E. Zhu, K. Pu, R. Miller, 
VLDB, 2018.

Organizing Data Lakes for Navigation, 
F. Nargesian, K. Pu, E. Zhu+, SIGMOD, 2020.



66

A SEARCH ENGINE ON OPEN DATA
RONIN: Data Lake Exploration, 
P. Ouellette, A. Sciortino, 
F. Nargesian+,  VLDB, 2021.



MORE ON DATASET DISCOVERY



FEATURE DISCOVERY

• Given a target column and a join column from a query table, find 
joinable tables s.t. the table contains a column that is correlated with 
the target column. 

68

Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD, 2021.

J’ F C D E H

……

C J

1 2

2 2

3 4

4 4

A F C D E H

……

J’ F C D E H

……

A F C D E H

……

A F C D E H

……

A F C D E H

……

⋈

correlated



FEATURE DISCOVERY

• Evaluate correlation measures on the synopses that enable the 
reconstruction of a uniform random sample of the joined table. 
• How to find attributes that are minimally correlated with sensitive 

attributes and highly correlated with the target attributes?
• The synopses may be biased towards the majority group

69

Correlation Sketches for Approximate Join-Correlation Queries, Santos et al., SIGMOD, 
2021.

⋈

correlated

C, J Indexed synopses on 
pairs of categorical and 
numerical attributes

T, N



OTHER WORKS

• Table Discovery in Data Lakes

• Goal-Oriented Data Discovery

72

Table Discovery in Data Lakes: State-of-the-art and Future Directions, SIGMOD, 2023.

METAM: Goal-oriented Data Discovery, ICDE, 2023. 



73

DATASET DISCOVERY: 
Syntactic and Semantic Join Search, 
Feature and Slice Discovery

FAIRNESS-AWARE DATA 
ACQUISITION: 
Data Distribution Tailoring

OUTLINE

QUERY ANSWERING:
Random Sampling 
over Union of Joins



DISTRIBUTION-AWARE DATA INTEGRATION

• A model is not bad overall it performs poorly on certain slices of data.
• Data debiasing 

74

breast cancer 
data 

train early detection
of breast cancer

random
test set

test

ü

drawn from the

same distribution

undergrad-male

HS-female

grad-male

HS-male
…

Responsible Data Integration: Next-generation Challenges,  
F. Nargesian, A. Asudeh, H. V. Jagadish, SIGMOD 2022. 



• Groups: (in)dependent variables, protected groups, 
 class labels, rare outcome groups, etc.
• Distribution
• What. counts of proportions over groups
• How. model debugging, data coverage [Asudeh+2018]

• Data
• Where. crowdsourcing, data lakes, data markets

GROUP REPRESENTATIVENESS

75

1K monitoring data in Chicago with at 
least 30% label=positive, and at least 
20% African American patients

train

early detection
of breast cancer

test



DATA DISTRIBUTION TAILORING (DT)

• How to construct a dataset that satisfies group distribution 
requirements from multiple sources in a cost-effective manner?
• Data debiasing: at the data acquisition step of data science pipeline

76

Tailoring Data Source Distributions for Fairness-aware Data Integration, 
F. Nargesian, A. Asudeh, H. V. Jagadish, VLDB 2021. 
Towards Distribution-aware Query Answering in Data Markets, 
A. Asudeh, F. Nargesian, VLDB 2022. 



QUERY, DATA, COST MODELS

• Query: counts specified over some groups
• Tuple-at-a-time access to a source
• Sources return relevant data

• Paying a cost for samples: monetary, labeling, computation, etc.

data sources

DT

target dataset
$$

1K monitoring data in 
Chicago with at least 30% 
label=positive, and at least 
20% African American 
patientsCrowd-

sourcing

77



78

Data Lake 1

Consumer 1

Consumer 2

Consumer n

…
Provider 1

Provider m
…

Database m

Journalism

Data ProvidersData Consumers

DATA MARKETPLACES

Towards Distribution-aware Query Answering in Data Markets, 
A. Asudeh, F. Nargesian, VLDB 2022. 

Data Science



DATA DISTRIBUTION TAILORING (DT)

79

source selection

Group Count 
Requirements

sampling and group 
identification

updating target 
dataset

updating group agg 
knowledge base

Sources

target 
dataset

Problem. Given sources with their costs, 
and count requirements on the groups, 
select a sequence of sources to sample, s.t.
count requirements are fulfilled, while the 
expected total query cost is minimized.

Are statistics about groups of interest 
available from data sources?



DT: DIRECT OPTIMIZATION

• Direct solution by defining the cost function and solving a DP problem
• Not practical for realistic settings
• Pseudo-polynomial time and space complexity

80

Package queries: efficient and scalable computation of high-order constraints, Brucato 
M. et al., VLDBJ 2018.



DT: COST FUNCTION

Pi
j : prob of obtaining Gj from Di

F(Q): expected cost of a target with counts Q

𝑐𝑜𝑠𝑡 𝑖𝑓	𝐷A 	@𝑖𝑡𝑒𝑟: 𝐶A + 4
BCD,?2EF

G

𝑃A
B𝐹B 𝑄 + (1 − 4

BCD,?2EF

G

𝑃A
B)𝐹 𝑄

13
expected remaining cost

Di prob of Gj
from Di

cost of sample

exp. remaining cost if a 
sample of Gj is obtained.

exp. remaining cost if sample 
does not help with the target



A DYNAMIC PROGRAMMING SOLUTION

15

Ci G1 G2

D1 2 0.2 0.8
D2 3 0.4 0.6 F(0,0)=0 F(0,1)

F(1,0) F(1,1) ✓

cost of obtaining a tuple of G1 from D1: 2/0.2=10
cost of obtaining a tuple of G1 from D2: 3/0.4=7.5

F(1,0) = min(2/0.2, 3/0.4) = 7.5  ⇐ D2
F(0,1) = min(2/0.8, 3/0.6) = 2.5  ⇐ D1

select D1: 2 + 0.2 F(0,1) + 0.8 F(1,0) 
select D2: 3 + 0.4 F(0,1) + 0.6 F(1,0)

F(1,1) = min(2 + 0.2 F(0,1) + 0.8 F(1,0), 
                       3 + 0.4 F(0,1) + 0.6 F(1,0)) = 8.4  ⇐ D1

G2

G1sources

cost groups Query: G1: 1 and G2: 1
F(1,1): the cost of a target with  G1: 1 and G2: 1

D1

D2



DT: COST FUNCTION

Pi
j : prob of obtaining Gj from Di

F(Q): expected cost of a target with counts Q

𝐹 𝑄 = 	𝑚𝑖𝑛∀ J3	𝐶A + 4
BCD,?2EF

G

𝑃A
B𝐹B 𝑄 + (1 − 4

BCD,?2EF

G

𝑃A
B)𝐹 𝑄

13

F(0,0)=0 F(0,1)

F(1,0) F(1,1) ✓

G2

G1

Query: G1: 1 and G2: 1
Sources: D1 and D2 D1

D2



STRATEGY: KNOWN DISTRIBUTIONS

• Round-robin with priority strategy on groups
• Prioritize minority group 

• rare and expensive to find

• Priority of Gj:

D∗L = argmax
∀M+

NOPQ	PR	S,	TU	M+
VPWX	PRM+

	
     priority GL = cost	per	sample	of	GL	
   if	select	D∗L

G4

G5

G6

Gj

…

G1G2

G3

G5

G1

84



DT ANALYSIS

• Prioritize minority group 
• Result. Optimal for two groups and equi-cost model.

85



• Find the optimal source for each group: 𝐷∗D and 𝐷∗Y
priority 𝐺4 =

1
𝑝𝑟𝑜𝑏	𝑜𝑓	𝐺4 	𝑖𝑛	𝐷∗4

OPTIMAL EQUI-COST BINARY

select 𝐷∗" select 𝐷∗5D*1 D*2

𝐷∗" has 20% of  G1    and 80% of  G2 𝐷∗5 has 5% of  G1 and 95% of  G2

86



GENERAL NON-BINARY DT: ANALYSIS

24

Cost-
effective 
source 
of G1

Cost-
effective 
source 
of Gm

+ + … +

Cost-
effective 
source of 
G2

Cost of fulfilling count 
requirements of  G1

+ Cost of fulfilling count 
requirements of  G2

+ … + Cost of fulfilling count 
requirements of  Gm

• Modeling the problem as m instances of the coupon collector’s 
problem, where every instance j aims to collect samples from the 
group Gj. 



COUPON COLLECTOR’S PROBLEM

• Given n coupon types, how many coupons do you expect you need to 
draw with replacement before having drawn each coupon at least 
once?
• Assume all coupons are equally likely. 

• After one sample, we have seen one coupon.
• After two samples, we have seen the same coupon twice with 

probability D
Z

and two different coupons  with probability Z[D
Z

.
• It is shown that the expected number of samples needed grows as 

Θ(𝑛 log 𝑛)

90Randomized algorithms, Motwani and Raghavan.



DT ANALYSIS

• Prioritize minority group 
• Result. Optimal for two groups and equi-cost model.
• Expected cost of m-groups with arbitrary cost

ψ =*
LCD

\

C∗LN∗L	ln
N∗L
L

N∗L
L − QL

• based on the coupon collector’s problem [Motwani and Raghavan’1995]

# of group j in Di

# of group j  in Di

91



• Having access to more sources incurs lower DT cost.
• Random source selection is only suitable when no group is a minority in the 

repository!

EVALUATION: KNOWN DT

92



DT : UNKOWN DISTRIBUTIONS

• Multi-armed Bandit (MAB)
• Given a time horizon T, a centralized planner sequentially chooses actions, 

receiving stochastic reward from unknown distribution

? ? ? ? ?

93



MULTI-ARMED BANDIT

• Sequential; exploration/exploitation tradeoff
• n arms; each arm Γi is associated with an unknown probability 

distribution νi with mean θi. 
• An agent selects an arm 
at every iteration. 

94

The Multi-Armed Bandit Problem: Decomposition and Computation.
Katehakis and Veinott, 1987. 

Fig: Towards Data Science



MULTI-ARMED BANDIT

• rt = R(at): reward of at taken from νi
𝔼 𝑅 𝑎] = ΓA = 𝜃A

• Goal is to maximize the expected cumulative reward 
• A = a1,··· ,aT: sequence of actions taken by an agent
• A* = a1

*,··· ,aT
*: optimal strategy 

• Regret for not taking the optimal action

𝐿 𝐴 = 𝔼[4
]CD

^

(𝜃]∗ −𝑅(𝑎]))]

𝜃]∗: optimal expected reward at t

95



MAB STRATEGIES

• Exploitation: query each data set once and focus on the source with 
maximum reward
• Works well with large # sources or when distributions vary greatly

• Exploration: choose a source at random with equal budget chance
• Selection probability is inverse proportional to cost
• Works well when distributions are similar

• Upper Confidence Bound

96
A contextual-bandit approach to personalized news article 
recommendation, Li et al. 2010.



UPPER CONFIDENCE BOUND

• Exploration/exploitation trade-off
• UCB favors exploration of sources with a strong potential to have an 

optimal reward value. 
𝐷 = argmax

∀7&
𝑅8 𝑖 + 𝑈8(𝑖)

• Hoeffding inequality

 𝑈8 𝑖 = 𝑅⊺ 𝑖 − 𝑅: 𝑖 5 ;< 8
=&

t: # samples, 𝑂$  : samples taken from Di

29

R(3)
R(2)

R(4)

R(1)Confidence 
Interval

Upper 
Bound

True value 
somewhere



DT : UNKOWN DISTRIBUTIONS

• Multi-armed Bandit (MAB)
• Given a time horizon T, a centralized planner sequentially chooses actions, 

receiving stochastic reward from unknown distribution

• Goal: minimize regret 
Regret T = OPT	reward	@T	 − DT	reward	@T

• Optimal regret is 1O( T).

? ? ? ? ?

98



EPS-GREEDY MAB FOR DT

• Explore with epsilon probability
• Sample a random source Dt and update empirical ratios of groups in the Dt

• Otherwise, exploit 
• Two-level policy with a frequentist DT
• Group to prioritize

G> ← argmax?' 	 Q@. minA((
CB

ratio(G@)
)

• Source to choose

D> ← argminA(
CB

ratio(G@)
• Results. An ε-greedy strategy with exploration probability ) ln 𝑡 /𝑡 at time t: 

regret  of 𝑂(T5/D log T"/D) at time T for equi-cost DT. 

empirical ratio 
of Gj in Di

Remaining count 
req of Gj

99

cost per 
successful 
sample



DATA ACQUISITION FOR ML

• Consumers query providers for data to enhance the accuracy of their 
models.
• The task of the consumer is to identify a series of queries ⟨(𝑃1, 𝐼1), · · · 

, (𝑃𝑧, 𝐼𝑧 )⟩ to obtain 𝐵 records, where 𝑃𝑖 and 𝐼𝑖 being the predicate and 
the number of requested records in the 𝑖-th query. 
• The objective is to improve as much as possible the accuracy of 

consumer’s ML model on test data.

100

Data Acquisition for Improving Machine Learning Models, Li et al., PVLDB, 2021.

Selective Data Acquisition in the Wild for Model Charging, Chai et al., PVLDB 2022



DATA ACQUISITION FOR ML

101

Data Provider

⟨(𝑃1, 𝐼1), · · · , (𝑃𝑧, 𝐼𝑧 )⟩

Predicates and 
number of records 
(e.g. 30 records 10000 ≤ salary 
≤ 20000 ∧ 20 ≤ age ≤ 30)

$

train data ++ test dataM → M’ 
Data Consumer

Utility Estimation and 
Budget Allocation

Sequential Predicate 
Selection 

𝑃1: U1,…, 𝑃n: Un

D
ata

Acquisition for Im
proving M

achine Learning M
odels,

Li et al., PVLD
B, 2021.



102

DATASET DISCOVERY: 
Syntactic and Semantic Join Search, 
Feature and Slice Discovery

FAIRNESS-AWARE DATA 
ACQUISITION: 
Data Distribution Tailoring

OUTLINE

QUERY ANSWERING:
Random Sampling 
over Union of Joins



RESPONSIBLE DATA: NEXT 
GENERATION REQUIREMENTS



Nima Shahbazi, et al. CSUR, 2023.

DATA BIAS IN ML PIPELINE



UNDERLYING DISTRIBUTION REPRESENTATION

• Standard Assumption of AI: training data is i.i.d random samples 
drawn from the distribution that query points follow
• Not always easy to satisfy
• Not easy to verify

• Underlying distribution is usually unknown
• Challenging to verify that collected data is unbiased

105



NOT EASY TO SATISFY

• Even if selected randomly

• Suppose surveys sent out to 
carefully chosen random 
sample

• Only a fraction of surveys 
returned

106



GROUP REPRESENTATION

• The need to show adequate consideration of minority/rare groups, to 
ensure reliable outcomes for such groups

107



UNBIASED AND INFORMATIVE FEATURES

• An AI data set: a collection of attributes (features) 𝒙 = {𝑥D…𝑥G}
• may also contain one (or more) target attribute (labels) 𝒚
• sensitive attributes 𝒔 such as race and gender

• Often challenging to collect sensitive attributes
• Example: users of a shopping website

• Usually do not collect the sensitive information of the users

108



INFORMATIVE FEATURES

• Performance of ML models depends on the set of attributes a data set 
contains
• E.g., in classification predict the target variable using the observations 

à High correlation between 𝒙 and 𝒚

109



UNBIASED FEATURES

• Sensitive attributes are used to specify (demographic) groups 
considered for fairness
• E.g.: race={White, Black, Hispanic, others}

• Low correlation between the features and the sensitive attributes

• Ideally 𝒙 and 𝒔 should be independent

110



COMPLETENESS AND CORRECTNESS

• Always important, even more critical for responsible AI
• incomplete and incorrect data typically hurt minorities, further increasing the 

data bias in such cases.

• Example
• Two groups (minority and majority); a small portion belong to the minority
• A simple task: compute average
• An incorrect majority value does not significantly impact the average
• An incorrect minority value may significantly skew the average 

111



SCOPE OF USE AUGMENTATION

• Collecting data that fully satisfies all requirements is often not possible in 
practice.

• Some of the requirements may conflict with others
• Group representation requirement may conflict with i.i.d sample requirement

• Every data set has a limited scope of use. No data set is good for all tasks.

• To ensure transparency:
• embed data with the meta-data and information that describe its collection 

process, its limitations, and its fitness for use

112



SAMPLING OVER DATA LAKES?



UNIFORM AND INDEPENDENT SAMPLING

• ML on integrated data is inherently expensive
• Luckily, in many tasks (e.g. AQP and statistical learning), a random 

sample suffices for analysis
• Samples should satisfying Underlying Distribution Representation 

and Group Representation requirements

114



UNIFORM AND INDEPENDENT SAMPLING

• Sampling a single source
• Stratified sampling to ensure that minority groups are sufficiently 

represented in the sample
• Given a set of sensitive attributes and an integer parameter k, a stratified 

sampling guarantees at least k tuples are sampled uniformly at random from 
each group. When a group has fewer than k tuples, all of them are retained. 

115
Join on Samples: A Theoretical Guide for Practitioners, Huang et al., PVLDB, 
2019.



ML ON NORMALIZED DATA

• Predicting the return flag of an item shipped to a customer using 
features of both the item and another item shipped to the same 
customer requires (self-) join

116

CustId Region Total Discount Flag2 Total2 Discount2

10 2 100 0.2 0 20 0.5

20 1 200 0.0 0 100 0.1

20 1 500 0.1 0 300 0.2

…

Flag

1

0

0

…

Label Features



ML ON NORMALIZED DATA

117

Joining 7 TPCH tables



IID SAMPLING OVER JOIN

• Training a classifier using SVM on a join over 7 tables
• Full join takes more than 12 hours to compute.
• Training runs forever without down-sampling.

118

⋈

A B

1 2

2 2

3 4

4 4

B C

1 2

2 2

3 4

4 4

C D

1 2

2 2

3 4

4 4

D E

1 2

2 2

3 4

4 4

E F

1 2

2 2

3 4

4 4

F G

1 2

2 2

3 4

4 4

G H

1 2

2 2

3 4

4 4

A B C D E F G H

1 2 2 1 2 1 1 2

2 1 2 2 3 3 2 2

3 4 5 3 2 3 3 4

……

Training

Evaluation

Accuracy = 80%

Random Sampling over Joins Revisited, Zhao et al., SIGMOD, 2018.



IID SAMPLING OVER JOIN

• Given T1 and T2, a sampling algorithm 
A is iid, if tuples returned by A all have 
the same sampling probability and the 
appearances of two tuples in the 
sample are independent events. 
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A B

1 1

2 1

3 1

4 2

5 2

6 2

7 3

B C

2 1

2 2

3 3

3 4

3 5

3 6

A B C

4 2 1

4 2 2

5 2 1

5 2 2

6 2 1

6 2 2

7 3 3

7 3 4

7 3 5

7 3 6

R(A,B) ⨝ S(B,C) = R(A, B, C)

Goal: sample 𝑡 ∈ 𝑅 with probability "
"E



IID SAMPLING OVER JOIN

• Sampling cannot be pushed down in join
𝑠𝑎𝑚𝑝𝑙𝑒(𝑅) ⨝ 𝑠𝑎𝑚𝑝𝑙𝑒(𝑆) ≠ 𝑠𝑎𝑚𝑝𝑙𝑒(𝑅⨝ 𝑆)

• If independent samples are taken from R and S, the result of joining 
uniform samples is a uniform sample of the join but not an 
independent one. 
• Consider independent Bernoulli samples with probability p from R and 

S 
• P(t1, t2) = p2, t1 ∈ R and t2 ∈ S
• P(t1, t‘

2) = p, t1 ∈ R and t‘
2 ∈ S

• Uniform and dependent
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IID SAMPLING OVER JOIN

• Two-table join

• Multi-way foreign key joins

• Ripple join (uniform but correlated samples)

• Wander join (independent but non-uniform samples)
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On Random Sampling over Joins, Chaudhuri et al., SIGMOD, 1999.
Random Sampling from Databases, Olken, Ph.D. Dissertation, 
1993.

Join Synopses for Approximate Query Answering, Acharya et al., SIGMOD, 
1999.  

A scalable hash ripple join algorithm, Luo et al., SIGMOD 
2002. 

Wander Join: Online Aggregation via Random Walks, Lo et al., SIGMOD 
2016. 



IID SAMPLING OVER GENERIC JOIN PATHS

• Randomness: return tuples from a join path J = T1 ⨝ … ⨝ Tn with 
probability 1/|J| 
• Independence: generate sampled results continuously until a certain 

desired sample size k is reached 

122Random Sampling over Joins Revisited, Zhao et al., SIGMOD, 2018.



IID SAMPLING OVER JOIN

• A join path is modelled as DAG
• nodes: tuples 
• edges: joinable tuples

• Weight 𝑤 𝑡 : # join results starting from 
tuple t

• Sample proportional to weight
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IID SAMPLING OVER JOIN
• A join path is modelled as DAG
• nodes: tuples 
• edges: joinable tuples

• Weight 𝑤 𝑡 : # join results starting from 
tuple t

• Sample proportional to weight
• Use a surrogate weight 𝑊 𝑡  if 𝑤 𝑡  is not 

available. 𝑊 𝑡 : upper bound of 𝑤 𝑡  

• Reject with prob. 
# $ %∑*+∈-. * # $+

# $

• Return when leaf
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UNION OF JOINS
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JOINS AND UNIONS ARE EXPENSIVE.
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RANDOM SAMPLING OVER UNION OF JOINS

• Fortunately, no need to compute full results.
• A uniform and independent sample can achieve a bounded error 

[Vapnik+1971].
• Robust for any models 

• Problem. Given a set of joins L={J1, …, Jn}, let U be the discrete space of set 
union U = J1∪ … ∪ Jn , return N independent samples S from U, without 
performing join and union, s.t. 

𝑃 𝑡 ∈ 𝑆 =
1

𝐽D ∪⋯∪ 𝐽Z
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RESPONSIBLE DATA ACQUISITION

• Multi-modal dataset construction (visual analytics)
• Uniformity across all modalities

• Data subset selection (coreset construction) under distribution 
constraints
• Data subset selection with K-coverage, group representation, and diversity
• Coresets over join paths
• Coresets over  noisy, dynamic, and stream data

• Auditing existing data management algorithms
• Data cleaning and schema mapping
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CORESET CONSTRUCTION

• Coreset construction under distribution constraints
• Data subset selection with K-degree, group representation, and diversity
• Coresets over join paths
• Coresets over noisy, dynamic, and stream data

139
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AUDITING DATA MANAGEMENT PIPELINES

• Synergies and transparency and fairness
• Auditing data cleaning techniques

• Entity matching

• Schema mapping 
• How bias is propagated through join and union operations?

• Leads to developing new algorithms
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HUMAN-CENTRIC DATA ACQUISITION

• The design of a domain-specific programming language for data lake 
programming
• Syntax and semantics of operators and programming constructs
• Type checking
• Iterative algorithms and programming language design 

• Dialogue-based query answering over data lakes
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Loki: Streamlining Integration and Enrichment Conference’17, July 2017, Washington, DC, USA
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S3

S4
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A8
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m1

m2

m3

m4

m5

Loki Repository

Source
(Sq) Inferred Declared

Target
(Tq)

Mapping

m6

Figure 1: Example query to map Sq to targets T1, T2, T3

mappings relate S1 and S2 to the geocoder’s expected inputs.
Loki had already inferred mappings between geospatial co-
ordinates in existing datasets (A6 andA7), connecting the de-
mographic lookup. There is no mapping for the serum feratin
scale (S4), but Loki mistakenly equates it with a hemoglobin
test for iron (A5), which has mappings both with test temper-
ature (A4) and without. Loki presents Alice with potential
mappings, and she decides whether to re-use or adapt an
existing mapping, or write a new one.

3.1 Attribute Resolution
Attribute resolution discovers pairs of unionable attributes
Am and An and create inferred mappings between them.
NL-Unionability has previously been studied [8] in the con-
text of non-numerical (i.e., text-typed) attributes through
the natural language association of data values. To evaluate
NL-unionability, an attribute is represented as the empirical
mean and covariance of the embedding vectors of its values.
These vectors are generated such that the semantic similarity
of two data values is translated into the similarity of their
embedding vectors, which can be evaluated by angular dis-
tance measures. NL-unionability assumes two attributes are
unionable if they are samples of the same Gaussian distribu-
tion on embedding vectors. Hotelling’s T-squared test gives
the NL-unionability score using the mean and covariance of
the embedding of pairs of non-numerical attributes. We now
generalize unionability to numerical attributes.

Unionability of Numerical Attributes. To evaluate union-
ability of two numerical attributes, we use the two-sample
Kolmogorov-Smirnov test over each pair of attributes. Intu-
itively, the test judges whether two samples of data are the
same by estimating the likelihood that di�erences between
their empirical distribution functions are due to random
chance. For two numerical attributes An and Am , the we
derive a KS-unionability scoreU (An,Am) 2 [0, 1] as follows.
We �rst compute a distance score D(An,Am) for the two
attributes as the maximum distance between their empirical
distribution functions Fn and Fm respectively: D(n,m) =
maxx (Fn(x) � Fm(x)) If the samples are drawn from the

same distribution, we expect the distance score to asymp-
totically approach zero for larger samples. Accordingly, the
Kolmogorov-Smirnov test sets a con�dence threshold� based
on an attributes sample size using � = 1.63

n
1
2
. Two samples

are distinct if D(An,Am) < 1p
|An |

·
r
�ln(�2 ) ·

1+ |An |
|Am |
2 [6]. To

de�ne the unionability score, we invert the formula for �
to compute the probability (p-value) that An and Am are
random samples from the same distribution, given D(n,m).

U (An,Am) = e

�2·|An | |Am |·D(An ,Am )2
|Am |+|An |

3.2 Type-Mapping Search
An inferred mapping hS1, . . . , Sk i ! hA1, . . . ,Ak i resolves
attributes S1, . . . , Sk to their unionable attributes hA1, . . . ,Ak i.
Suppose X and Y are sets of attributes. The set X is mapped
to Y if we can �nd one-to-one mappings between their
attributes. The resolution score of a one-to-one mapping
hAi i !m

⌦
Aj

↵
, namely res(m), is the unionabiliy score

U (Ai ,Aj ). A mappingX !m Y is de�ned as an alignment C :
X ! Y that is a set of one-to-one mappings hSi i !m0

⌦
Aj

↵
,

where Si 2 X and Aj 2 Y . We evaluate an alignment C by
the joint unionability of mapped attributes in the alignment.

UC(X ,Y ) = �Si!Aj 2CU (Ai ,Aj )

Given attribute setsX andY , we de�ne the resolution score of
mapping X !m Y (res(m)), as the unionability of the align-
ment that has the highest unionability, res(m) = maxCUC .
Note that declared mappings do not need attribute resolution,
so we �x their resolution scores to be one. We de�ne the res-
olution score of a mapping sequenceM = { m1, . . . ,m` } as
the product of individual scores (i.e., res(M) = �mi 2Mres(mi )).
Given a Loki repository hA,R,Mi and a query q =

⌦
Sq,Tq

↵
,

our goal is to �nd the valid mappingM = {m1, . . . ,m`} from
Sq to Tq with the highest mapping score. As shown in Fig-
ure 1, an answer starts with inferred mappings from Sq and
ends with target Tq

We solve the type mapping search problem with a greedy
forward search algorithm. The search starts with N = {Sq}
and at each step, it ranks mappings on any subset N ⇢ N
by resolution scores and applies the mapping with high-
est resolution score on N. Every time a valid mapping
mi hA1, . . . ,Ak i ! Aj is applied we update N = N [ Aj .
Suppose at step t the sequence of mappings ism1, . . . ,mt .
If no valid mapping can be applied on N and Tq < N, the al-
gorithm backtracks tom1, . . . ,mt�1, updates N accordingly,
and applies the valid mapping with the second highest map-
ping score and so on. The search terminates when search
succeeds (i.e., Tq 2 N), a maximum number of search steps
have been taken, or the search space is exhausted.

Data Lakes
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