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Abstract

Open Data plays a major role in open government initiatives. Governments around the world are adopt-
ing Open Data Principles promising to make their Open Data complete, primary, and timely. These
properties make this data tremendously valuable. Open Data poses interesting new challenges for data
integration research and we take a look at one of those challenges, data discovery. How can we find new
data sets within this ever expanding sea of Open Data. How do we make this sea transparent?

1 Introduction

The goals of Open Data are laudable including the promotion of civil discourse, improving public welfare, and
ensuring citizens may participate more fully in their governments. Governments in many countries have recog-
nized that the provision of open access to their data is crucial and beneficial to the public good [2, 33]. Therefore,
both federal and local governments have been putting policy frameworks in place in order to enable access to
their data sources. When open data is used effectively, citizens can explore and analyze public resources, which
in turn allows them to question public policy, create new knowledge and services, and discover new (hidden)
economic value useful for existing and new business initiatives. Efforts to support true transparency often in-
volve dedicated teams that manually gather data from tens or hundreds of sources and tediously edit and compile
it to produce consumable reports on issues like federal spending, the environment, and many others.

Given the value of Open Data, especially Open Government Data, an important question is how well are we
doing in providing adequate tools for integrating Open Data? We take a look at the first task in data integration,
data discovery. We consider data sets of structured data which may be from a relational DBMS, but more often
are extracted from spreadsheets or document collections and published in formats such as CSV or JSON. We will
use the term data set and table interchangeably for any dataset in which a set of (not necessarily named) attributes
can be identified. We consider three important data discovery problems: finding joinable tables (Section 2),
finding unionable tables (Section 3), and creating an organization over a massive collection of tables (Section 4).
We consider solutions that apply specifically to Open Data (given the characteristics of Open Data) versus those
developed for other types of data such as enterprise data or web tables (meaning tables extracted from web
pages). We conclude with a discussion of open problems in data discovery.
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2 Finding Joinable Tables

One of the basic ways of finding new tables is to start with an existing table (which we will call a query table)
and look for other tables that join with the query table. Before defining this problem precisely and presenting a
solution for finding joinable tables in Open Data, we motivate this problem with an example.

Example 2.1: A journalist is working on a piece about the state of industrial research in Canada. Being knowl-
edgable about the topic, he searches using the keyword “NSERC”! on open.canada.ca, the Canadian Open Data
portal, to find data sets related to the disbursement of government funding for scientific research. The keyword
search returns tables on individual funding disbursements and the industry partners associated with some of the
disbursements.> The search results are interesting, and include detail on the funding amount, research topic,
proposal keywords, along with other information. As one example, by joining and processing the tables on
funding disbursements and industry partners, the journalist creates a table on companies and the total funding
received from NSERC, in 2004, as shown in Table 1.

company name  total funding amount number of fundings

Bell Canada, 4,505,988 26
Kruger Inc. 1,551,303 7
Pfizer Canada Inc. 464,725 2
Bombardier Inc. 120,000 1

Table 1: The query table for finding joinable tables for attribute “company name”

The journalist is not yet satisfied because all the information in the table is related to the funding alone with-
out information on the industry partners other than their names. He wants to look into other information about
these companies that could potentially paint a more enlightening picture about why companies are receiving
grant funding. In this case, the journalist does not know what specific information might be available and does
not know what search keywords to use. The keyword search feature on open.canada.ca, and other similar Open
Data portals, only allows the user to search for keywords against the accompanying metadata, which is typically
human-curated and may not contain many (or any) of the data values in the data set. So the journalist cannot
just use the company names as the keywords to find tables that contain those company names.

The journalist wants to find joinable tables, other tables that join with the table he has already created on
company names. So how do we build a search engine for joinable tables? The problem can be formulated as
a classic set overlap search problem by considering attributes as sets, and joinable values as overlap between
sets. For example, Table 1 has an attribute “company name” which contains the set of values: Bell Canada,
Kruger Inc.,Pfizer Canada Inc., and so on. To find additional attributes about the companies the
journalist wants to find tables that have an attribute that joins with these values.

2.1 Set Similarity Search

Set overlap search is an instance of the set similarity search problems that have been studied extensively [35, 13,
29, 42, 43]. However, these solutions focus on relatively small sets such as keywords, titles, or emails. The
proposed algorithms typically use inverted indexes, and their runtimes are typically linear in the set sizes (both
the query set and the result sets). However, Open Data has very large set sizes in comparison to keywords or
titles: based on a crawl of 215,393 CSV tables from U.S., U.K., and Canadian Open Data portals as of March
2017, we found the average set size is 1,540 and the maximum size is 22,075,531. In comparison, typical data
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sets used in previous work for set similarity search [5, 43], have much smaller set sizes under 100. Thus, the
existing search algorithms that work for keyword and string search may not be suitable for finding joinable tables
in Open Data, because Open Data sets could contain thousands or even tens of thousands of values.

Most of the previous work in set similarity search proposed algorithms that find exact results. In addition
to exact approaches, some research has considered solving the set similarity search problem approximately.
Interestingly, research in approximate approaches pre-date that of the exact approaches we mentioned above,
and started outside of the database research community, in web search engines [9]. The most popular recipes
for approximate set similarity search use locality sensitive hashing (LSH) [3, 18, 23, 30, 40]. The reason for
LSH’s popularity is likely due to its simplicity: it is data-independent, requires only a few parameters, and can
be implemented using off-the-shelf hash table code libraries. Most importantly, LSH also scales very well with
respect to the size of sets, because each set is stored as a “sketch” — a small, fixed-size summary of the values
(e.g., MinHash [8] or SimHash [11]).

The main justification for an approximate algorithm is that users are often willing to sacrifice a certain degree
of accuracy in the search results to receive a significant speed-up in response time. Typically, an approximate
algorithm returns much faster than an exact algorithm for the same query, and uses less resources (such as
memory), because of the use of sketches instead of the actual data values. Thus, a search engine may respond
quickly with approximate results first, and optionally provide the exact result only when required.

2.2 LSH Ensemble

We proposed LSH Ensemble, an LSH-based algorithm for approximate set overlap search, that can be used
for finding joinable tables in Open Data [44]. Our work addresses two important research gaps in existing
approximate set similarity search algorithms that were limiting their usefulness on Open Data. The first gap is
in defining an appropriate similarity function. Most of the proposed LSH algorithms only support symmetric
normalized similarity functions, such that f(A, B) — R|0, 1], and f(A, B) = f(B, A) regardless of the order
of input. Examples of such similarity functions f are Jaccard and Cosine. The normalized version of set overlap
is Containment similarity which in contrast is not symmetric:

_@nX|  Owerlap(Q,X)
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where () is the query set and X is a potential result set. Due to its asymmetry, containment similarity cannot be
used by most existing LSH algorithms with the exception of Asymmetric Minwise Hashing (AMH) [40]. We
used AMH on Open Data and observed that its accuracy deteriorates quickly when applied to data with a large
skew in set cardinality size. We show the Zipfian distribution of attribute sizes in Open Data in Figure 1.

The large difference in set cardinalities is in fact the reason for choosing containment over other, better
supported, similarity functions like Jaccard. When the query is large, the Jaccard similarity may be very small,
even for sets that are fully contained in the query — sets we would want to return as fully joinable. The cardinality
difference also leads to the second major gap in using LSH algorithms for searching Open Data: the accuracy
of LSH decreases with skewness. AMH transforms Containment to Jaccard by making all sets the same size
as the largest set. This approach pads small sets with added values that do not exist in any real sets and then
build sketches on the padded sets. We have shown that in Open Data where the largest set can be much larger
than the smallest sets, AMH is very inaccurate.’ An analysis for this effect is provided in the full version of our
paper [45]. In Open Data, the set size distribution is close to Zipfian (with massive numbers of small sets), so
the vast majority of sets will have very low accuracy sketches by using padding, and this is unacceptable even
for approximate search. Our work addresses both of these gaps. We convert Containment to Jaccard, which is a
normalized symmetric similarity function, using a well-known transformation [14].

Containment(Q, X) — R0, 1] €))

31t is possible to over-compensate by using very large sketches, however, this just defeats the purpose of using sketches.
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company name  # of grants total funding total contributios

Bell Canada 26 4,505,988 22,385.22
Kruger Inc. 7 1,551,303 17,500
Pfizer Canada Inc. 2 464,725 11,100
Bombardier Inc. 1 120,000 5,000

Table 2: The result after joining the query table with a search resul
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This resulting table is a product of very low effort by our journalist, who otherwise would rely on serendipity,
significant knowledge of available data, or labor intensive search. Using our tool, the journalist unlocks a level of
government transparency that was otherwise lost in the sea of Open Data. The journalist’s work might contribute
to better public understanding of disbursement of government funds, enabling stronger participatory governance.

3 Finding Unionable Tables

Some data analytics tasks require building master lists of tuples by unioning relevant tables. For instance, to
analyze the state of greenhouse gas emission, a data scientist might need to build a list of various geographical
locations and their gas emission indicators. A simple keyword search for “greenhouse gas emission” in the
Canadian Open Data portal returns an overwhelming number of data sets which need to be manually examined
to understand if the information can be meaningfully unioned. Automated solutions for more effectively finding
unionable tables from Open Data would make this a less laborious task for data scientists.

Borough Data Year Fuel ktCO2  Sector

Barnet 2015 Electricity 240.99 Domestic

Brent 2013 Gas 164.44  Transport

Camden 2014 Coal 13490 Transport

City of London 2015 Railways diesel 10.52  Domestic
County Year Commodity Type  Total Emissions (MT CO2e) Source
Benton 2015 Gasoline 64413 ConAgra Foods. . .
Kittitas 2015 Fuel oil (1, 2... 12838 Central Wash. ..

Grays Harbor 2015 Aviation fuels 1170393 Sierra Pacific. ..

Skagit 2015 liquefied petroleum 59516 Linde Gas...

Table 3: Unionable tables from London (top) and Washington State (bottom).

3.1 Attribute Unionability

Defining when two attributes are unionable is not as straight-forward as defining when two attributes are joinable.

Example 3.1: Consider the datasets in Table 3 containing greenhouse gas emission statistics one from UK Open
Data for the London area® and one built based on the US Open Data for the state of Washington®. Clearly, it
seems reasonable to consider attributes with a large value overlap (like “Date Year” and “Year”) to be unionable,
but an important question is how much overlap is sufficient? In addition, value overlap is often not required.
Attributes (like “Borough” and “County”) that have semantic overlap may also be considered unionable. Some-
times an ontology containing both entities and classes can be used to discover that values that do not overlap
actually come from the same semantic class (such as a class “Region of Country”’). However, ontologies (espe-
cially public ontologies) are rarely complete and may have some, but not all values in an attribute. As with value
overlap, an important question is how many values need to map to the same semantic class for two attributes
to be declared unionable? Consider attributes “Fuel” and “Commodity Type” which are intuitively unionable.
The former uses standard generic fuel types, while the latter uses user-defined text descriptions of fuels. It is
possible, though unlikely, that a sufficient number of these values are in an ontology but even if we do not have
an ontology with sufficient coverage, the words used in these two attributes have a semantic closeness that can
be measured using natural language techniques. Intuitively, from our understanding of natural language, we

>https://data.london.gov.uk/dataset/leggi
Shttps://catalog.data.gov/dataset/2015-greenhouse-gas-report-data



recognize that the values in “Fuel” and “Commodity Type” appear frequently in the same context in natural
language. Again, the challenge is to define a principled mathematical framework for justifying how close the
words in two attributes need to be before the attributes are considered unionable.

This example illustrates some measures that can be used to quantify attribute unionability. Indeed, table
union has been considered for web tables (meaning tables extracted from web pages [10]), using set overlap or
other similarity functions over attribute values (Jaccard, tf-idf, etc.) or by mapping values to ontologies [10, 27,
39] These heuristic approaches also leverage attribute names which can be very reliable in web tables. However,
to really help our data scientist, we would like a principled way of turning a similarity measure into a hypothesis
test: how likely is it that these two attributes contain values draw from the same common domain?

3.2 Table Unionability

Once we have a principled way of understanding how likely it is that two attributes are unionable, we need a
way of evaluating how likely it is for two tables to be unionable.

Example 3.2: A data scientist who uses one of the datasets in Table 3 as a query table will receive in response
a ranked list of tables that are unionable with her query by just using attribute unionability. However, if she
uses a different query table, perhaps one containing only French words as values, over a corpus of English
Language tables (where only an English ontology and word embeddings are used), it is not meaningful to
return the nearest (closest) table if is too dissimilar to be unioned. So a similarity measure alone is not enough.
Moreover, if her query is a table like London Energy and Greenhouse Gas Inventory containing a subset of
strongly unionable attributes with a candidate table State of Washington Greenhouse Gas Report in the repository
(like “Date Year” with “Year”, “Borough” with “County”, and “Fuel” with “Commodity Type” of Figure 3) as
well as non-unionable attributes (like “Sector’’), we would want the search engine to return unionable tables with
a maximal alignment indicating which attributes can be unioned.

From this example, we can add to our requirements for a search engine that it automatically selects which
measure is most suitable for estimating the unionability of a specific pair of attributes. In addition, we would like
a search engine that not only finds tables that are unionable on all their attributes, but rather one that retrieves
tables unionable on a subset of attributes. To do this, we also need to be able to pick a maximal set of attribute
pairs that can be meaningfully aligned (unioned) in two tables.

3.3 Table Union Search

Our solution estimates the likelihood that two attributes contain values that are drawn from the same domain
- a problem we call attribute unionability [35]. We defined three types of domains for attributes and three
statistical tests (set-unionability for overlap based on values, sem-unionability for overlap based on mappings
into an ontology, and NL-unionability which is natural-language based). These tests evaluate the hypothesis that
two attributes come from the same domain. Specifically, in set-unionability and sem-unionability, we argue that
the size of the syntactic or semantic overlap of attributes follows a hypergeometric distribution. This allows us
to compute the likelihood of two attributes being drawn from the same domain as the Cumulative Distribution
Function of the hypergeometric distribution. Given the cardinalities of A and B, n, and n, the intersection size
t, and the size of their domain np, the likelihood of set-unionability is defined as follows.

Uset(AaB) = Z p(S\na,nme) 3)
0<s<t

To compute set-unionability, we need to know the size of the domain, np. In the context of Open Data, it is
impractical or impossible to know the true domain. Thus, we make a practical assumption that the domain is



approximately the disjoint union of A and B, and therefore np ~ n, + ny. Similarly, we define the likelihood
of the semantic unionability of A and B based on the size of intersection of the ontology classes that their values
are mapped to.

In NL-unionability, we model an attribute with a multivariate normal distribution on the word embedding
vectors (¥) of its values centered around 4 with some covariance matrix X 4.

vEA = TEN(ua, a) “4)

To build such a distribution, we leverage pre-trained word embedding vectors [25]. We call 4 the fopic
vector of an attribute. Two attributes are NL-unionable if they are sampled from the same distribution. The
distance between the topic vectors of attributes (the estimated mean of the set of embedding vectors) is an
indicator of whether they are drawn from the same domain. We apply Hotelling’s two-sample statistics (7'2) to
undertake tests of the distances between the topic vectors of attributes. The distance of the mean of multivariant
distributions is inversely proportional to 72 statistics and follows an F-distribution. This allows us to define
NL-unionability as the Cumulative Distribution Function (F') of the distance between topic vectors.

Uw(A4,B) =1—F(T? ng +ny) %)

To automatically select the best measure for each pair of attributes in a repository, we also developed a new
distribution-aware measure, ensemble attribute unionability. We defined the notion of goodness for a union-
ability score generated by each measure. Intuitively, given a measure and its corresponding unionability score
for a query and a candidate attribute, goodness estimates the likelihood of not finding another attribute that has
higher unionability with the query in a given corpus. This allows the selection of the measure that provides the
strongest signal, or goodness, within a repository. We developed LSH-based indexes that permit us to efficiently
retrieve an approximate set of candidate unionable attributes. These indexes allow our search engine to scale to
large repositories of Open Data.

To perform search, we need to define a unionability score for table pairs. Ideally, the most unionable tables
share a large number of highly unionable attributes with a query table. However, in reality, candidate tables
might share a large number of weakly unionable attributes or a few strongly unionable attributes with a query.
We defined an alignment of two tables as a one-to-one mapping between subsets of their attributes. Assuming
the independence of unionability of different attribute pairs in an alignment, we defined the probability of union-
ability of two tables as the product of their attribute unionability. Note that table unionability is not monotonic
with respect to the number of attributes in a mapping in an alignment. Thus, we need to define a meaningful
way of comparing the unionability between sets of attributes of different sizes. We presented the goodness of an
alignment as the likelihood of the alignment being the most unionable of the alignments of a specific size in a
repository. Through this distribution-aware algorithm, we were able to find the optimal number of attributes in
two tables that can be unioned [35].

Since there is no benchmark available for table union search, to evaluate accuracy, we built and publicly
shared an Open Data table union benchmark. We believe table union search is an important tool enabling cross-
publisher analyses by letting data scientists quickly find candidate data sets from different publishers that may
have been gathered using similar protocols.

4 Data-driven Organization of Open Data

While the volume of Open Data continues to grow, Open Data repositories lack connectivity and a unified orga-
nization. Thus, the world’s Open Data sets are typically hosted in isolated silos, each with locally and manually
curated organizations. In this section, we present some research directions towards creating federated organi-
zations over distributed Open Data repositories. Such organizations can be valuable in helping data scientists
navigate collections of Open Data gather from different publishers.



4.1 Connectivity (Linkage) Graph

We have presented data-driven methods to infer linkages (similarity based on joinability or unionability) between
data sets. This allows users to search, discover, and combinie data sets from different repositories. The Open
Data search engine (Section 2.3) allows interactive navigation of repositories by join linkages [46]. During
navigation, joinable data sets can be integrated and the result of join used to create new join linkages. In
addition to such dynamic (query-driven) connectivity discovery, a user may want a navigation plaform that lets
her view the entire repository abstractly and navigate progressively into parts of the repository of interest.

4.2 Hierarchical Organization

Good publishing practice dictates that Open Data should be published with metadata. Typical metadata files
contains unstructure or semi-structured information that might include the authoring institution of the data set,
the date-time of the creation of the data set, and a set of tags or keywords. Open Data portals’ currently use
these tags for search and navigation. Since the metadata is manually created by data content authors, it is often
incomplete, inconsistent, and may exhibit different levels of semantic granularity for different data sets.

Example 4.1: Consider our journalist studying the state of industrial research in Canada from Example 2.1.
He starts his research with NSERC industry partner awards®, government awards given to industry-university
collaborations. The schema of the data set consists of university institutions, departments, names of the re-
searchers, and industry company names. Here is an incomplete list of the tags of this data set in the meta-
data: NSERC, award, fellowship, training, postgraduate, postdoctoral, university,
college, innovation, industry, science, engineering, technology. These tags represent
different aspects of the data set (like science and t raining) and semantics at different levels of granularity
(like NSERC, a specific award-agency and award, a more abstract notion). A search engine on metadata could
use a set similarity measure such as Jaccard similarity over tags to find related data sets. For example, a data set
with tags University and college; award and expenditures® shares some similarity with the tags of the NSERC
industry partner awards mentioned above. Interestingly, another data set on academic grants and expenditures
has only one tag: Summary tables. One would not be able to discover the connection between such a data
set and the data set on industry partner awards by relying only their respective metadata.

While metadata tags alone may be insufficient to organize repositories, we believe these tags, together with
connectivity graphs, can be leveraged to create hierarchical organizations. Traditionally, taxonomy induction
and ontology construction approaches extract labels (classes in ontologies) from text documents and use hand-
constructed or automatically discovered textual patterns, as well as label co-occurrences to infer taxonomies on
extracted classes [26, 41]. In the data set organization problem, the challenge is to construct taxonomies over
groups of data sets by leveraging metadata and connectivity graphs.

S Open Problems

Data discovery has been studied mostly within the enterprise, over corporate data lakes, or over web data (for
example, web tables), with little research on Open Data repositories. We briefly review some of this work and
highlight implications for Open Data management and open problems that remain.

"https://open.canada.ca/en and https://ckan.org/
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5.1 Finding Connections between Data Sets

Keyword-based search. To find relevant data sets to keyword queries, OCTOPUS performs web document-
style search on the content and context of web tables [10]. These tables are then clustered into groups of union-
able tables using common similarity measures. Pimplikar and Sarawagi present a search engine that finds tables
similar to a query table that is represented by a set of keywords each describing an attribute of the query [37].
Keyword-based table search algorithms take time linear to the size of attribute values and have been shown to
perform well on web tables. It is an open question if this technique could be made to scale over Open Data. For
example, the WDC Web Table Corpus is massive (over 50 Million tables), but the average attribute size is 10
and the largest attribute has only 17,030 values [28], in contrast, in the Open Data we have reported on in this
paper, the average set size is 1,540 and the maximum size is 22,075,531.

Attribute-based search. Existing work on the problem of finding linkage points among data sources on the
web propose lexical analyzers and similarity functions accompanied by a set of search algorithms to discover
joinable attributes [20]. As with our work, linkage point discovery does not require the existence of schemas,
but it is unclear the performance over data with the massive sizes and skewed distributions of Open Data. Ilyas
et al. [22] learn syntactic patterns of an attribute and uses this to perform attribute search. To search repositories,
they adapt MinHash LSH to use these patterns. The system has only been evaluated over repositories of thou-
sands of attributes, but it is a very interesting open question to see if some of the ideas of LSH Ensemble [44]
could be used to made this approach feasible on massive repositories, where individual sets can also be massive.

Schema and table instance-based search. Data Civilizer, proposed after LSH Ensemble, also employs
LSH to build a linkage graph between data sources in a data lake [12]. Extending ideas from enterprise-level
data integration systems which compute possible join paths within large data sources (large relational or semi-
structured databases) to suggest mappings between data sources [15], Data Civilizer computes possible join
paths (foreign key paths) between data sources that can be used in queries [12]. Unlike our work which sup-
ports computation of linkages at interactive speed (the search problem), this work materializes a linkage graph.
The system provides a declarative source retrieval query language that enables search over this materialized
graph [32]. Very recent related work adds semantic linkages using word embeddings on attribute names in
schemas (which are rich in enterprise data) [17] and dynamically maintains the materialized graph [16]. Other
systems for data discovery over data lakes include Kayak [31] (which also uses materialized statistical profiles
to discover or suggest data sets).

Das Sarma et al. [39] define joinability and unionability for web tables by assuming that each table has a
subject column that contains entities that the table is about. Their entity-complement approach uses an ontology
to identify entities and the accuracy depends on the coverage of this ontology. We have shown that in Open Data
the coverage of open ontologies like YAGO can be very low (on our corpus less than 13% of string values can
be mapped to the ontology) [35].

A lot of research has been done on scalable schema matching and ontology alignment, where the problem is
to match pairs (or small sets) of large schemas (ontologies). However, schema matching and ontology alignment
have not generally been studied as search problems over massive collections of Open Data sets. Despite the rich
literature, there are many open problems. Here we suggest a few.

With the exception of set-unionability, the similarity measures used in table union work (ours and unioning
of web tables) are not directly applicable to numerical values. Evaluating the unionability of numerical attributes
requires first understanding what each attribute quantifies using which measurement unit. For instance, using
the header names, attributes Total Emissions (MT CO2e) and ktCO2 might be recognized as unionable and can
be consolidated after unit conversion. To make sense of quantities in web tables, Ibrahim et al. [21] represent
<measure, value, unit> triples over taxonomies of measures (e.g., physical and monetary). This representation
can be augmented with distribution properties of an attribute. Once numerical attributes are canonicalized, we
need a way of computing the likelihood of numerical attributes being drawn from the same domain and then we
could incorporate this idea into table union search.



In table union search, we used pre-trained embedding models [25] (trained on Wikipedia documents) to
compute NL-unionability. This allows NL-unionability to take advantage of embeddings trained on external
sources of knowledge and results in high accuracy of search. However, these embeddings are limited to the
vocabulary of the training corpus. Training word embeddings on text documents and knowledge bases has
been extensively studied [6, 34, 36]. With the abundance of Open Data, training domain-specific and generic
embedding models on Open Data using metadata, schema and constraints is an interesting research problem
which has applications beyond table union search.

5.2 Data Set Organization and Management

Goods organizes data sets by building data set profiles that leverage query logs and metadata [19]. These profiles
are exposed to users through portals that allow faceted search on the metadata of data sets. Open Data does not
come with query logs but providing faceted search over Open Data is a desirable goal. Skluma is a system for
organizing large amounts of data (organized in different file types) which extracts “deeply embedded” metadata,
latent topics, relationships between data, and contextual metadata derived from related files [4]. Skluma has been
used to organize a large climate data collection with over a half-million files. Skluma uses statistical learning to
allow data to be discovered by its content and by discovered topics, something that is especially important for
headerless-files which also appear in Open Data.

The VADA project considers source selection (data discovery) using detailed models of user preferences [1].
Source selection is a classical data integration (and information retrieval) problem that has been studied for
decades. Relevant data sets (sources) are identified (typically using keyword search or exploration) and selection
is done based on a model of user preferences [1] or models of the cost and/or value of using a source [38]. Source
selection usually is a task following data set search, but nonetheless something that will be important to consider
over Open Data.

DataHub [7] provides efficient management of versioned data in a collaborative environment that has a
community of users. In contrast, Open Data is published out in the wild typically without strict versioning.
An interesting open problem is detecting near versions of data and providing an efficient way of on-boarding
open data into a data collaboration platform like DataHub. DataHub supports IngestBase, a declarative data
ingestion platform where enterprise users can create sophisticated data ingestion plans to ingest operational data
from sensors or other external sources (financial feeds, social media, etc.) [24]. Open Data however requires a
data-driven way of discovering good ingest plans as it is published in a way that basic elements (like the schema
or number and type of attributes) may change.

6 Conclusion

We have taken a detailed look at data discovery over Open Data in a way that will be both efficient and effective
given the characteristics of both individual data sets and collections of Open Data. We have presented new
table join and table union search solutions that provide interactive search speed even over massive collections of
millions of attributes with heavily skewed cardinality distributions. We have also presented a research vision for
creating data-driven organizations of data repositories and extending the functionality and reach of our search
algorithms. Though examples, we showcased how powerful search solutions make finding Open Data an easier,
less daunting task — we hope making Open Data a bit more transparent and useable by the public.
Acknowledgments This work was partially supported by NSERC.
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