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Abstract—We study the top-k set similarity search problem
using semantic overlap. While vanilla overlap requires exact
matches between set elements, semantic overlap allows elements
that are syntactically different but semantically related to in-
crease the overlap. The semantic overlap is the maximum match-
ing score of a bipartite graph, where an edge weight between two
set elements is defined by a user-defined similarity function, e.g.,
cosine similarity between embeddings. Common techniques like
token indexes fail for semantic search since similar elements may
be unrelated at the character level. Further, verifying candidates
is expensive (cubic versus linear for syntactic overlap), calling for
highly selective filters. We propose KOIOS, the first exact and
efficient algorithm for semantic overlap search. KOIOS leverages
sophisticated filters to minimize the number of required graph-
matching calculations. Our experiments show that for medium to
large sets less than 5% of the candidate sets need verification, and
more than half of those sets are further pruned without requiring
the expensive graph matching. We show the efficiency of our
algorithm on four real datasets and demonstrate the improved
result quality of semantic over vanilla set similarity search.

Index Terms—Set Similarity, Semantic Overlap, Semantic
Search, Bipartite Graph Matching, Semantic Join

I. INTRODUCTION

Set similarity search is a central task in a variety of
applications, such as data cleaning [1]–[3], data integration [4],
[5], document search [6], and dataset discovery [7], [8]. The
similarity of two sets is typically assessed using vanilla overlap
(the number of identical elements of two sets) [8], [9] or some
normalization of the overlap [7], [10]. In the presence of open-
world vocabulary and transient quality of data, the vanilla
overlap turns out to be ineffective for sets of strings since it
only considers exact matches between set elements. To address
this problem, fuzzy set similarity search techniques like Fast-
Join [11], [12] and SilkMoth [13] combine set similarity and
character-based similarity functions on the string set elements,
e.g., edit-distance or Jaccard on element tokens. The fuzzy
overlap of two sets is the maximum matching score of a
bipartite graph with set elements as nodes and their pairwise
character similarity as edge weights. Unfortunately, fuzzy
search can only handle typos and small dissimilarities in set
elements and fails for elements that are semantically equivalent
or similar but are unrelated at the character level. Since fuzzy
set search techniques heavily rely on exact matches between
tokens of elements, they cannot be extended to semantic
similarity measures.

§Work done while at the University of Rochester.

Example 1: Consider query set Q and the collection L =
{C1, C2} of candidate sets in Fig. 1. The goal is to find the
top-1 similar set to Q in L. (1) Vanilla overlap considers only
the exact match on the set element LA to assess pairwise set
similarities. Typos (Blaine vs. Blain), synonyms (BigApple
and NewYorkCity), or other relations between elements (e.g.,
the fact that Charleston and Columbia are two cities in
South Carolina, SC) are ignored. (2) Fuzzy similarity search
allows for matches between syntactically similar set elements.
With Jaccard similarity on 3-grams, the relationship between
Blaine to Blain is detected (3-grams and similarities shown
in the figure). However, BigApple and NewYorkCity do not
contribute to the set similarity; instead, BigApple is matched
to Appleton, a city in Wisconsin, due to the resemblance of
these terms at the character level. Other relationships between
set elements are not detected. Therefore, C1 is ranked top-1,
although C2 is more similar to the query: C2 matches on
LA and Blaine like C1, but in addition has synonyms and
semantically related elements. �

In this paper, we present semantic overlap and the KOIOS
algorithm that solves the top-k set similarity search problem
using this novel measure. Semantic overlap generalizes vanilla
and fuzzy overlap and allows semantically related set elements
that are unrelated at the character level to contribute to the
overall set similarity. Given a query set Q and a candidate set
C, we construct a weighted bipartite graph, where a node is
an element in Q or C, and an edge between an element of Q
and an element of C is weighted by their semantic similarity.
The maximum bipartite matching selects a subgraph, such that
no two edges share a node and the sum of the subgraph
edge similarities is maximized. Following fuzzy set search
literature [11], [13], the mapping between set elements is
an optional one-to-one mapping. The semantic similarity is
quantified by a user-specified function, e.g., cosine similarity
of embeddings of elements.

Example 2: Continuing Ex. 1, we perform a top-1 search
for Q in L = {C1, C2} using semantic overlap. Fig. 1 (on
the right) shows the semantic similarities of set elements
with a minimum of 0.7 (dashed lines) and the subgraph that
maximizes the one-to-one matching (solid lines) and defines
the semantic overlap; the matching is optional since not all
elements are matched. In addition to elements that are identical
or similar at the character level (Blain, Blaine), semantically
related elements (e.g., Charleston and SC) contribute to
the semantic overlap; Appleton, despite its character-level



Q = {LA, Seattle, Columbia, Blaine, BigApple, Charleston} 
C1 = {LA, Blain, Appleton, MtPleasant, Lexington, WestCoast} 
C2 = {LA, Sacramento, Southern, Blain, SC, Minnesota,  
  NewYorkCity}
Blaine = {bla, lai, ain, ine} 
BigApple = {big, iga, gap, app, ppl, ple} 
Appleton = {app, ppl, ple, let, eto, ton} 
Blain = {bla, lai, ain} 
NewYorkCity = {new, ewy, wyo, yor, ork, rkc, kci, cit, ity}
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GreedyMatching (Q,C1) = 4.09, GreedyMatching (Q,C2) = 3.74, Top-1 = C1 
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Fig. 1: Top-1 search using vanilla, fuzzy, and semantic overlap. Element similarity in fuzzy overlap is the Jaccard of 3-grams.

resemblance to BigApple, does not contribute since it is se-
mantically unrelated. C2 is ranked top-1 as expected. Note that
a greedy matching approach that matches edges in descending
weight order is not optimal and will fail to rank C2 above C1.

�

Semantic overlap lends itself to a wide variety of tasks. For
example, in the presence of dirty data and data generated by
different standards, formattings, and organizations, semantic
overlap search can assist with joinable dataset search. Vanilla
overlap has been extensively studied for table join search [7],
[8], [10]. The notion of semantic join has been explored
in SEMA-JOIN [14], were given two joinable columns the
goal is to find an optimal way of mapping values in two
columns by leveraging the statistical correlation, obtained from
a large table corpus, between cell values at both row-level
and column-level. In addition to discovering joinable columns,
which is not the focus of SEMA-JOIN, KOIOS enables finding
an optimal way of mapping cell values based on their semantic
similarity, when a large corpus of data on cell value mapping
is not available.

Several challenges must be addressed to solve the semantic
set overlap search problem. First, computing the semantic
overlap requires a bipartite graph matching between two sets,
which is expensive and runs in O(n3) time for sets with
cardinality n [15]. Note that greedy matching, which has
lower complexity, does not consistently achieve optimal top-k
results. Second, the sheer number of sets in repositories calls
for aggressive filters to eliminate sets with no potential. KOIOS
addresses this issue with a novel filter-verification framework.
The refinement phase of KOIOS avoids the expensive graph
matching of sets whenever possible and postpones exact
matching to the post-processing phase. KOIOS defines bounds
for the semantic overlap of sets that are used for filtering,
and these bounds are incrementally and iteratively refined.
Third, due to the sheer number of sets and large vocabulary in
real repositories, the filters are frequently updated. To alleviate
this overhead, KOIOS supports efficient-to-update filters that
operate based on a dynamic partitioning of candidate sets.
Finally, depending on the distribution of data, many sets may
require post-processing. KOIOS considers post-processing sets
ordered by their potential of being in the top-k results. More-
over, it applies a specialized filter for the early termination of
the graph-matching algorithm, based on the history of post-
processed sets, which further improves the pruning power. To

summarize, we make the following contributions.
• We propose a new set similarity measure called semantic

overlap that generalizes the vanilla overlap measure by con-
sidering the semantic similarity of set elements quantified
by a user-defined similarity function.
• We formulate the top-k set similarity search problem using

semantic overlap and propose a novel filter-verification
framework, called KOIOS, to address this problem.
• We present powerful and cheap-to-update filters that ag-

gressively prune sets during both the refinement and post-
processing phases.
• We perform an extensive analysis of the pruning power of

filters, response time, and memory footprint on real datasets.
Our experiments show that KOIOS has a small memory
footprint and is at least 5.5x and up to 740x faster than
a baseline that does not use the proposed filters. KOIOS
performs particularly well for medium to large query sets
by pruning more than 95% of candidate sets.

II. PROBLEM DEFINITION

We assume sets with pairwise comparable elements, i.e., the
user can define a similarity function for comparing elements.

Definition 1 (Semantic Overlap). Given two sets of elements
Q and C and a similarity threshold α > 0, suppose M : Q→
C is an optional one-to-one matching that determines for each
qi ∈ Q to be matched to M(qi) ∈ C or none. Let sim(., .)
be a symmetric similarity function that returns 1 for identical
elements and a value in [0, 1] for non-identical elements. We
define simα(x, y) = sim(x, y), if sim(x, y) ≥ α, otherwise, 0.
The semantic set overlap of Q and C is:

SO(Q,C) = max
M

∑
qi∈Q

simα(qi,M(qi))

When set elements are strings, we refer to set elements as
tokens. When clear from the context, we use sim for simα

and SO(C) for SO(Q,C). The semantic overlap is defined
by the matching M : Q → C that maximizes the aggregate
pairwise semantic similarity of pairs in M . The semantic
overlap is a symmetric measure. The choice of sim depends
on the context, e.g., if the set tokens are strings, the cosine
similarity of their embedding vectors is a common way of
comparing elements. Other purely character-based functions
include the Jaccard similarity of words in tokens [13] and the



Fig. 2: KOIOS framework.

edit distance of tokens [13], [16]. Vanilla overlap is a special
case of semantic overlap with sim evaluating the equality of
elements: sim(qi, cj) = 1 if qi = cj and sim(qi, cj) = 0,
otherwise.

Lemma 1. The vanilla overlap is a lower bound for the
semantic overlap: |Q ∩ C| ≤ SO(Q,C).

Proof. |Q ∩ C| > SO(Q,C) is not possible since we can
always construct a matching M : Q → C that maps all
elements in Q∩C to their identical counterparts. The similarity
sum of this mapping is |Q ∩ C|.

The semantic overlap of two sets can be formulated as a
maximum bipartite graph matching problem. For sets C and
Q, we define a weighted bipartite graph G = (V,E), V =
{Q,C}, where C and Q form disjoint and independent sets
of nodes in G, and an edge (qi, cj) ∈ E ⊆ Q × C indicates
that sim(qi, cj) 6= 0. The sum of edge weights of a maximum
bipartite graph matching is called the score of the matching.
Finding the maximum weighted bipartite graph matching is
known as the assignment problem and has time complexity
O(n3), where n is the cardinality of sets [15].

Definition 2 (Top-k Semantic Overlap Search). Given a query
set Q and a collection of sets L, k ≤ |{C ∈ L | SO(Q,C) >
0}|, find a sub-collection ω ⊆ L of k distinct sets such that:

1) SO(Q,C) > 0 ∀C ∈ ω, and
2) min{SO(Q,C), C ∈ ω}≥SO(Q,X) ∀X ∈ L \ ω

Ties are broken arbitrarily so that the result is of size k [17].

Our solution is a filter-verification algorithm, called KOIOS.
In the refinement phase, KOIOS identifies candidate sets and
aggressively prunes sets with no potential using cheap-to-apply
filters. During post-processing, KOIOS takes pruning to the
next level by only partially computing exact matches. Fig. 2
shows the basic framework of KOIOS.

III. BASIC FILTERING

We refer to the list of result sets partially ordered by
semantic overlap descendingly as top-k result and denote θ∗k as
the semantic overlap of the set with the k-th smallest semantic
overlap in the top-k result. Of course, the value of θ∗k is
not known until the top-k result is computed. Assume an
algorithm that iterates over sets in L and maintains a running
top-k list containing the best sets found so far: The running
top-k may contain any k-subset of L with non-zero semantic

overlap. We denote the smallest semantic overlap of sets in
the running top-k list by θk; by definition, θk ≤ θ∗k.

Based on Def. 1, any set C ∈ L that contains at least
one element with similarity higher than α to some element
of Q has a non-zero semantic overlap and is a candidate set.
Clearly, if SO(C) < θk, set C can be pruned, as there exist at
least k sets with better SO scores. However, since computing
SO(Q,C) is expensive (cubic in set cardinality), our goal
during the refinement is to prune without computing the exact
matching. To this end, we compute lower and upper bounds of
the semantic overlap for candidate sets. The bounds help prune
sets by comparing against the current θk, hence, reducing the
number of exact graph matching calculations.
UB-Filter: We define an upper bound for semantic overlap.

Lemma 2. Given query set Q and candidate set C, then
SO(C) ≤ |Q| ·maxqi∈Q,cj∈C{sim(qi, cj)} = UB(C).

Proof. The weight of an edge, (qi, cj) ∈ Q × C, in the
semantic overlap bipartite graph of sets Q and C is bounded
by the maximum similarity between any two elements of
the sets. The size of any matching M between Q and C
is bound by |M | ≤ min(|Q|, |C|) ≤ |Q|. With Def. 1,
SO(C) ≤ UB(C).

Since UB(C) ≤ SO(C), any set C that satisfies UB(C) <
θk can be safely pruned with Lemma 2.
LB-Filter: Given a bipartite graph, the greedy matching
algorithm at each iteration includes the edge with the high-
est weight between unmatched nodes until no edge with
unmatched nodes can be found. The greedy algorithm for
maximum matching has complexity O(n2 · log n), where n is
the cardinality of sets. As shown in Ex. 2, the greedy algorithm
does not find the optimal solution. However, the score of the
greedy matching has been shown to be at least half of the
optimal score [18].

Lemma 3. Let Q and C be two sets with semantic overlap
SO(C). In the corresponding bipartite graph, let LB(C) be
the maximum of (a) the maximum edge weight, and (b) the
greedy matching score. Then, LB(C) ≤ SO(C).

Proof. (a) We can always construct a one-to-one matching
M = {(qi, cj)} that consists of the edge (qi, cj) with max-
imum weight. (b) Since the greedy matching of a bipartite
graph is a lower bound of the optimal matching, SO(C) is
lower-bounded by the greedy matching score.

If we knew the value of θ∗k, we could do the maximum
pruning during the refinement step. Initializing θk with a value
close to θ∗k will improve the prunig power of the UB-Filter.
One way is to initialize the top-k list by computing the SO of
a sample of sets and picking the top-k ones. In this case, the
gained pruning power of the UB-Filter comes at the cost of
graph matching calculations. To avoid this cost, we leverage
a lower bound of θk for pruning.

Lemma 4. LetR be the running top-k list and θlb the smallest
lower bound LB(C) for C ∈ R. Then, θlb ≤ θ∗k.



Proof. By definition, θlb is the minimum LB of sets in R, and
θk is the minimum exact SO of sets in R. Since LB(C) ≤
SO(C) for any set C ∈ L, θlb = minC∈R{LB(C)} ≤
minC∈R{SO(C)} = θk such that θlb ≤ θk ≤ θ∗k.

With Lemma 4, we can safely prune a candidate set if
UB(C) < θlb.

IV. REFINEMENT: CANDIDATE SELECTION

In the refinement phase, we use two index structures:
the token stream Ie and the inverted index Is. Let D =
∪Cj∈L,ci∈Cj

ci, be the vocabulary of L. The token stream Ie
is a stream of all elements in D ordered in descending order
by the maximum similarity to any query element qi ∈ Q. The
token stream Ie is a sequence of tuples (qi, cj , sim(qi, cj)),
where qi ∈ Q and cj ∈ D. If sim(qi, cj) < sim(ql, cm),
tuple (qi, cj , sim(qi, cj)) will follow (ql, cm, sim(ql, cm)) in
Ie. The stream stops when there is no token cj ∈ D left with
sim(qi, cj) ≥ α, qi ∈ Q. The inverted index Is maps cj ∈ D
to {C1, . . . , Cm} ⊆ L, such that ∀ Ci, 1 ≤ i ≤ m : cj ∈ Ci.
Upon reading a tuple (qi, cj , sim(qi, cj)) from Ie, the index
Is is probed to obtain all sets containing cj . This creates a
stream of sets in L, in descending order of the maximum
similarity set elements to some query element. Clearly, if a
set appears in this stream it has a non-zero semantic overlap
and is a candidate set. The first time we observe C in this
stream, (qi, cj , sim(qi, cj)) is in fact max{sim(qi, cj)}, cj ∈
C, qi ∈ Q. Therefore, based on Lemma 2 and 3, we can
initialize UB(C) = min(|Q|, |C|) · sim(qi, cj) and LB(C) =
sim(qi, cj). KOIOS uses the first k sets obtained from Ie to
initialize the running top-k list and θlb. As more sets are
obtained, sets with lower LB(C) may be found which results
in updating the running top-k list and θlb.

Algorithm 1 presents the pseudo-code of the refinement
phase of KOIOS. The power of the algorithm is in postponing
exact match calculation to the post-processing phase, while
pruning sets aggressively in this phase. In each iteration,
KOIOS reads tuples from Ie and updates the bounds of
candidate sets. Any set C with UB(C) < θlb is safely pruned.
A set C with LB(C) ≤ θlb ≤ UB(C) is in limbo until more
elements are read and more evidence about the bounds of the
set is collected. The changes could be: UB(C) decreases,
LB(C) increases, or θlb increases. The indexes Ie and Is
allow us to obtain candidate sets in the descending order of
their initial upper- and lower-bounds. By processing candidate
sets in this order, the search algorithm identifies promising sets
early, can update the top-k list, and improve θlb to achieve a
high pruning ratio.

Due to Lemma 2, UB(C) is tied to its largest element
similarity to some query element. To order sets based on
initial UB and LB, we need to retrieve elements in the
vocabulary D in descending order of their similarity to some
query element. To avoid computing all pairwise similarities
between vocabulary and query elements, for a given sim, any
index that enables efficient threshold-based similarity search
is suitable. For example, when sim is the cosine similarity

of word embeddings of tokens or the Jaccard of the token
set of elements, the Faiss Index [19] or minhash LSH [20]
can be plugged into the algorithm, respectively. This allows
KOIOS to perform semantic overlap search independent of the
choice of sim. This sets KOIOS apart from existing fuzzy
set similarity search techniques [13], [21]–[23], which rely on
filters designed for specific similarity functions.

To retrieve candidate sets in the descending order of their
upper-bounds, a naive solution is to extend the idea of the
inverted index with a map that associates each query element
to a list of all elements in the vocabulary. The elements in a
list are ordered descendingly according to the similarity of an
element to the query element. The size of this index grows
linearly with the cardinality of Q. Now, let r : Q → A be
given by rj(q) = tj for j ∈ 1, . . . , |D| that is to say that rj(q)
returns the j-th most similar element of D to q ∈ Q. Note
that the j-th most similar element to elements of Q is not
necessarily the one with j-th highest similarity to any element
in Q, arg maxtj (sim(tj , qi),∀i ∈ [Q]). For example, ri−1(q)
and ri(q) can both have higher similarities than r1(q′). The
function r can be realized by one shared index I over D and
a priority queue P of size |Q| that keeps track of the most
similar elements to elements of Q. We refer to I and P as
token stream Ie.

Given an element q, the index I returns the next most
similar unseen element of D to q. In the initial step, we probe
I with all elements in Q and add results to the priority queue.
At this point, P contains |Q| elements, each being the most
similar element to a query element. The queue keeps track of
the query element corresponding to each element in P . The
top of the queue always gives us the mapping of the query
element to the unseen element with the highest similarity. The
second most similar element to Q is already buffered in P .
To maintain the queue size, when we pop the top element, we
only require to probe I with the query element corresponding
to the popped element because the most similar elements to
the rest of the query elements still exist in P . Note that when
a non-zero α threshold is provided, we stop probing I when
the first element with a similarity smaller than α is retrieved.

In addition, we build an inverted index that maps each
element in D to the corresponding sets in L. Since Ie returns
elements in the descending order of similarity to Q, the new
sets that are retrieved from Is arrive at the descending order
of UB-Filter.

V. REFINEMENT: ADVANCED FILTERS

If a set obtained from the index is not pruned using the
UB-Filter, it is added to the candidate collection. We introduce
two advanced bounds, iUB(Ci) and iLB(Ci), and describe
how we incrementally update these bounds. iUB and iLB are
based on the partial bipartite greedy matching of sets. For an
element in a candidate set, Ie may provide multiple matching
elements (all edges in a bipartite graph). However, we only
consider valid edges, i.e., those matching unmatched elements.
iLB: In iLB, we assume all edges that are not a part of a
partial greedy matching have similarity zero.



Algorithm 1 KOIOS (REFINEMENT)
Input: L: a repository, Ie: token stream, Is: an inverted index on sets in L,

Q: a query set, k: search parameter, α: token similarity threshold
Output: U : candidate sets
1: U ← ∅, P ← ∅ // candidate sets, pruned sets
2: sim← 1 , Llb ← ∅ // initial similarity, top-k LB list
3: while sim ≥ α do
4: t, sim← get next similar token(Q, Ie)
5: if sim ≥ Llb.bottom() then Cs← get sets(t, Is)
6: for C ∈ Cs and C /∈ U and C /∈ P do U .add(C)
7: for C ∈ U do
8: UB(C).update(t, sim)
9: if UB(C) < Llb.bottom() then

10: U .remove(C), P.add(C)

11: LB(C).update(t, sim)
12: if LB(C) > Llb.bottom() then Llb.update(C)

return U

Lemma 5. Given candidate set C and query Q, the sum of
weights of any subset of edges in a bipartite greedy matching
of Q and C is a lower-bound for SO(C).

Proof. Let G′ = (V,E′) be the bipartite graph of the greedy
matching M ′ : Q→ C with score s′. Suppose M ′′ : Q→ C
is a matching with G′′ = (V,E′′), where E′′ ⊆ E′; let s′′

be the score of M ′′. Because E′′ ⊆ E′, we have s′′ ≤ s′.
Based on Lemma 3, s′ is a lower bound on SO(C), therefore,
s′′ ≤ s′ ≤ SO(C).

Suppose iLBl(C) is the current score of the partial greedy
matching of C. Upon reading an unmatched element of C
with similarity sl+1 to an unmatched query element, using
Lemma 5, the lower-bound is updated to iLBl+1(C) =
iLBl(C) + sl+1. Since we obtain the edges of partial greedy
matching from Is, we always consider the partial matching
with the highest score, thus, computing the largest iLB. It
is straightforward to verify if an sl must be included in the
matching by keeping track of the set of elements that have
been matched so far between Q and each C. Updating the
lower bound of a candidate set may result in updating the
top-k list and θlb. Since θlb is always increasing (otherwise,
we would not update), updating θlb results in pruning more
sets based on their upper-bounds.

Since set C may contain identical elements to query el-
ements, i.e., C ∩ Q 6= ∅ and the index returns elements in
decreasing order, the lower-bound of C is reduced to the
number of its overlapping elements with the query, |Q ∩ C|,
plus the greedy matching score of the remaining elements of
Q and C. Because lower-bounds update θlb, and a tighter
θlb improves the pruning power of our technique, we choose
to initialize the lower-bound of a set to its vanilla overlap
(number of identical elements). To do so, the algorithm always
includes a query element itself in the result of probing Ie
for the first time. With this strategy, we deal with out-
of-vocabulary elements. For example, if sim is the cosine
similarity of the embedding vectors of tokens and some tokens
are not covered in the embedding corpus, we still consider
them in the semantic overlap calculation if the query contains
the same tokens.
iUB-Filter: iUB assumes the largest possible similarity for
any edge that is not a part of a partial greedy matching, i.e.,

the smallest similarity seen so far from Ie.

Lemma 6. Given a partial greedy matching of cardinality l of
query Q and set Ci with score Si. Upon obtaining (qm, t, s)
from Ie, where qm ∈ Q, element t belongs to any set in L, and
s is the next largest element pair similarity, we have the upper
bound iUB(Ci) = Si +min(|Q| − l, |Ci| − l) · s ≥ SO(Ci).

Proof. Since l elements of Ci have already been matched to el-
ements of Q, set Ci has maximum mi = min(|Q|−l, |Ci|−l)
remaining elements to be matched. Upon reading an element t,
with the next largest similarity, namely s, regardless of which
set t belongs to, by definition, any unseen element of Ci has
similarity smaller than or equal to s. There are two scenarios:
either element t ∈ Ci or t /∈ Ci. If t ∈ Ci is already matched
with some element in the query, we discard the element and
know that any unmatched element has a similarity no larger
than s to a query element. Otherwise, the upper-bound of any
unmatched element in Ci after observing element t can be
tightened to s and we have iUB(Ci) = Si +mi · s.

Updating iUB(Ci) can result in pruning the set if Si +
mi . s ≤ θlb. A naive way is to update the upper-bound
of all sets, whenever a new element is retrieved from Ie.
However, this results in an excessive number of small updates
many of which will not sufficiently decrease the upper-bound
to prune the updated set. To solve this issue, we propose a
technique that groups sets into buckets by their number of
unseen elements (m). Only sets that contain a newly retrieved
element require an update and are moved to bucket m−1. All
other sets need not be updated, but still are pruned as soon as
their upper-bound falls below θlb.

KOIOS bucketizes sets into m buckets Bm =
{(Ci, Si)|mi = m}. Upon the arrival of a new element
with similarity s, any set Ci in Bm and a sum of matched
elements Si should be pruned if its updated upper-bound is
smaller than θlb, i.e. Si + m · s ≤ θlb. We conclude that if
Si ≤ θlb − (m · s), we can safely prune Ci. Since all sets
in a bucket have the same number of remaining elements
and s is fixed for all sets, the right-hand side of this pruning
inequality is the same for all sets in a bucket.

We maintain the pairs (Ci, Si) in a bucket ordered by
ascending Si values. Upon the arrival of an element with
similarity s, we scan the ordered list of sets in each bucket.
If a pair satisfies the condition Si ≤ θlb − (m · s), we prune
the set. As soon as we find a set S′ that does not satisfy
the condition, we can conclude that the remaining sets do
not satisfy the condition and cannot be pruned, because the
remaining sets must have Si values larger than S′. Now,
suppose a set Ci in bucket Bm contains the newly arrived
element: We first remove the pair (Ci, Si) from its bucket,
update Si, and insert the pair into Bm−1. Restricting updates
to the sets that contain an element and using the element
similarity to prune some sets saves us many updates at each
iteration. Our experiments confirm that maintaining buckets
does not incur a large overhead.



Fig. 3: Pruning sets with upper and lower bounds for k = 2.
Each set is represented with its LB and UB. The red circles
indicate the pruned sets and the green lines indicate the recent
updates to LB and UB.

Since the similarity of identical elements is one even for
identical out-of-vocabulary elements, like iLB, KOIOS initial-
izes the upper-bound of a newly obtained set Ci and its Si to
its vanilla overlap.

Example 3: Consider sets C1, . . . , C7 in Fig. 3. Suppose we
are searching for the top-2 sets with the highest semantic
overlap with a query. Each set is represented with an interval
of its lower-bound and upper-bound with respect to the query.
The value of θlb is initially calculated based on the lower-
bounds of C1 and C2, since they have the top-2 lower bounds
among all sets. This means at the beginning of iteration t, set
C5 is pruned because UB(C5) < θlb. The remaining sets stay
in the candidate collection because they all have lower-bounds
smaller than θlb and upper-bounds that are greater than θlb.
Suppose, at iteration t+ 1, by reading an element of C4 from
the token stream, LB(C4) and UB(C4) are updated (the right
side of Fig. 3). Now, C4 is the set with the highest lower bound
and as a result, the value of θlb is updated to LB(C1). This
allows us to safely prune C3 because UB(C3) < θlb. At the
end of the refinement phase, the algorithm passes remaining
sets (C1, C2, C4, C6, and C7) to the post-processing phase.

�VI. POST–PROCESSING PHASE

All candidate sets that have not been pruned during the
refinement need to be verified. Some sets may end up in this
phase due to their large cardinality even though the similarity
of their elements is relatively low. KOIOS applies filters
during post-processing to minimize the number of exact match
calculations as well as the time to complete the calculation.
No-EM: Let U be the candidate sets that have not been pruned,
and θub be the k-th largest UB(C) for C ∈ U .

Lemma 7. A set C ∈ U with θub ≤ LB(C) is guaranteed to
be in a top-k result ω.

Proof. Computing the maximum graph matching for a C ∈
U never increases θub, because SO(C) ≤ UB(C). If a set
C ∈ U satisfies θub ≤ LB(C), by LB(C) ≤ UB(C) and
θ∗k ≤ θub, it is guaranteed that θ∗k ≤ SO(C) and C is in the
top-k result.

This Lemma allows us to skip the exact semantic overlap
calculation of some sets. Due to ties at distance θ∗k from the
query there can be multiple solutions for the top-k search
problem. All solutions share the same value for θ∗k.

Algorithm 2 KOIOS (POSTPROCESSING)
Input: Q: a query set, k: search parameter, U : unpruned sets, k: search

parameter, Llb: top-k LB list
Output: Lub: top-k results
1: Qub ← init pq UB(U) // priority queue on unpruned sets
2: Lub ← init topk UB(U) // top-k UB list on unpruned sets
3: while ¬Lub.all checked() do
4: C ← Lub.select next unchecked()
5: if LB(C) ≥ UB(Lub.top()) then
6: C.checked←True
7: continue
8: SO(C)←compute_SO_early_termination(C,Q)
9: LB(C),UB(C)←SO(C), C.checked←True

10: if SO(C) < Lub.bottom() then Lub.remove(C)
11: if SO(C) ≥ Llb.bottom() then Qub.add(C)

12: if SO(C) ≥ Llb.bottom() then Llb.update(C)

13: while Lub.len() < k and ¬Qub.empty() do
14: C ← Qub.pop()
15: if Llb.bottom() < UB(C) then Lub.add(C)

return Lub

In this phase, KOIOS maintains three data structures: 1)
an ordered list of sets with top-k lower-bounds (Llb), 2) an
ordered list of sets with top-k upper-bounds (Lub), and 3) a
priority queue of sets ordered by upper-bounds (Qub). Main-
taining Llb and Lub allows us to have fast access to θlb and θub,
respectively. Based on Lemma 7, the algorithm should only
compute the bipartite matching of sets with UB(C) ≥ θub. As
such, KOIOS prioritizes the exact graph-matching calculation
of sets with high upper-bounds. Intuitively, sets with high
upper-bounds have the potential for high semantic overlaps. To
speed up, all sets in Lub are queued and evaluated in parallel
in the background. Upon the completion of the exact match
of a set C, we update LB(C) = UB(C) = SO(C). This
has two effects. First, the update of UB(C) = SO(C) may
cause the θub to be decreased. As a result, if SO(C) ≥ θub,
the set remains in Lub. If SO(C) < θub, we add the set to
Qub, because the algorithm may realize later that SO(C) was
higher than the sets that are currently in Lub, whose semantic
overlaps are not calculated yet. Inserting a set into Qub results
in Lub having k − 1 sets. Probing Qub provides the next set
with the k-th largest upper-bound to be added to Lub.

Second, the update of LB(C) may cause the θlb to increase
and potentially prune some sets. The algorithm takes a lazy
approach and considers the sets in Lub for such pruning until
a set C with UB(C) ≤ θlb is obtained. The post-processing
phase terminates when all sets in the Lub satisfy the condition
θub ≤ LB(C) and the list is returned as the final search result.

EM-Early-Terminated-Filter: Despite pruning sets exten-
sively, the exact matching calculation remains expensive.
Consider bipartite graph G(V,E) built on C and Q, where
V = Q ] C and the weight of an edge between elements
qi ∈ Q and cj ∈ C is w(qi, cj) = sim(qi, cj). The weight
of an optional one-to-one matching M ⊆ E is w(M) =∑

(qi,cj)∈M w(qi, cj). A matching M is called perfect if for
every v ∈ V , there is some e ∈ M which is incident on
v. The Hungarian algorithm [24] considers a node labeling
to be a function l : V → R. A feasible labeling satisfies
l(qi) + l(cj) ≥ w(qi, cj),∀qi ∈ Q, cj ∈ C. An equality
subgraph is a subgraph Gl = (V,El) ⊂ G = (V,E), fixed



on a labeling l, such that El = {(qi, cj) ∈ E : l(qi) + l(cj) =
w(qi, cj)}. The Hungarian algorithm considers a valid labeling
function l and maintains a matching M and a graph Gl. It
starts with M = ∅. At each iteration, the algorithm either
augments M or improves the labeling l→ l′ until M becomes
a perfect matching on Gl. Let M ′ be a perfect matching in
G (not necessarily in Gl). It is a well-known result that if
l is feasible and M is a perfect matching in Gl, then M
is a maximum weight matching [24]. From the proof of the
Kuhn-Munkres theorem, we have that w(M ′) ≤ w(M). This
theorem also shows that for any feasible labeling l and any
matching M we have w(M) ≤

∑
v∈V l(v) [24].

Lemma 8. A set C can be safely pruned during bipartite
graph matching with Q if the sum of labels assigned by the
Hungarian algorithm [24] is smaller than θlb.

Proof. Suppose a valid node labeling function l and an equal-
ity subgraph Gl. The perfect matching M on Gl created by
the Hungarian algorithm is indeed the maximum matching and
its weight w(M) is the semantic overlap of Q and C. Now,
let M ′ be some perfect matching in G. Since from the Kuhn-
Munkres theorem we know that w(M ′) ≤ w(M) and for the
labeling l and matching M , w(M) ≤

∑
v∈V l(v), we have

w(M ′) ≤
∑
v∈V l(v). Therefore, the sum of node labels is an

upper bound for SO(Q,C) ≤
∑
v∈V l(v). This upper bound

can be computed on the fly during graph matching. A set C
can be pruned as soon as

∑
v∈V l(v) exceeds θlb.

By computing this upper-bound during the process of graph
matching for a set C, as soon as UB(C) < θlb, the process
can be terminated and C can be safely removed. The early
termination is particularly important for large sets when the
matching of a large set is executed in parallel and a global θlb
is updated as the processing of other sets is completed.

Example 4: Suppose sets D1, . . ., D6 of Fig. 4 are in the post-
processing phase. Suppose we are searching for the top-3 sets.
Each set is represented with an interval of its lower-bound and
upper-bound with respect to the query. The post-processing
starts by Lub = [D2, D1, D6]. From LB(D2) > θub, we know
we do not need to compute the exact match of D2, because we
know the true value of θk (θ∗k) is never greater than θub. Thus,
any set with semantic overlap higher than θ∗k must be in the
final result. The exact matching of D1 and D6 are calculated
in parallel. Suppose D6 finishes and its bounds are updated.
This results in increasing θlb and decreasing θub. Thus, D6

is removed from Lub and added to Qub. After probing Qub
considering θlb, D3 is added to Lub. Suppose using the early
termination rule, UB(D3) is updated to a value lower than
θlb. The algorithm immediately stops the matching of D3, and
eliminates it from Lub. At this point, D6 is added back to Lub
and θub = SO(D6). The algorithm continues to compute the
next set in Lub (D1). �

To scale out search, we randomly partition the repository
and run KOIOS on partitions in parallel. To improve the

Fig. 4: Post-processing: pruning sets with upper and lower-
bounds and exact semantic overlap, for k = 3. Each set is
represented with its LB and UB. Here the red circle indicates
NoEM Filter, the blue circle indicates EM, and the purple
circle indicates the EM-ETM Filter.

pruning power, all partitions share a global θlb that is the
maximum of the θlb.

VII. ANALYSIS OF KOIOS

A. Correctness
Based on Def. 1, a set C with at least one element with

similarity greater than α has a non-zero semantic overlap with
Q. The token stream retrieves all set elements with similarity
greater than α, and for each element, the inverted index returns
all sets containing that element. As a result, all sets with non-
zero semantic overlap are considered. KOIOS can prune a set
C under three circumstances: (1) When C appears for the first
time due to the similarity s of one of its elements cj ∈ C to
some query element qi ∈ Q. Because of the non-increasing
similarity order in Ie, s = max{sim(qi, cj)}, cj ∈ C, qi ∈
Q. Therefore, based on Lemma 2 , the upper bound UB(C)
can be computed, and C is pruned if UB(C) ≤ θlb. Note
that considering θlb for pruning does not create false negatives
because, as shown in Lemma 4, θlb ≤ θk ≤ θ∗k. (2) During
refinement by iUB filter: Lemma 6 proves an upper bound
based on the similarity of elements of arbitrary sets, thus any
set pruned by θlb cannot be a false negative. (3) During post-
processing: Lemma 8 proves that whenever the sum of node
labels of the Hungarian algorithm becomes smaller than θlb,
the set can be safely pruned. The algorithm continues to prune
based on the UB-Filter in this phase as θlb is being improved
by the exact match calculation. If a set is not pruned under
the above conditions until the algorithm terminates, it remains
in Lub and is in fact in the top-k result.

B. Time and Space Complexity
The exact bipartite graph matching can be computed in
O(n3) time [25], [26]1. Although the worst-case time com-
plexity of KOIOS is O(m · n3), where n is the maximum
set cardinality and m is the number of sets in L, thanks
to our filters we require far fewer than m comparisons,
thereby reducing the overall runtime by orders of magnitude in
practice. Moreover, the EM-early-terminated filter can reduce
the number of iterations of the Hungarian algorithm.

Recall that D is the vocabulary of all distinct tokens in L.
Each token in Q can have a similarity greater than α with

1For graphs with a particular structure, a lower complexity may be achieved
with Dijkstra’s algorithm and Fibonacci heaps [27].



TABLE I: Characteristics of datasets.

#Sets MaxSize AvgSize #UniqElems
DBLP 4,246 514 178.7 25,159

OpenData 15,636 31,901 86.4 179,830
Twitter 27,204 151 22.6 72,910
WDC 1,014,369 10,240 30.6 328,357

at most |D| tokens, thus the space complexity for the token
stream Ie is O (|D| · |Q|). The inverted index Is is linear in
the input size: it stores |D| keys and the aggregate size of
all lists is at most D+ =

∑
C∈L|C|. With |D| ≤ D+ and an

average set size of C̄, the space complexity of Is is O
(
L · C̄

)
.

Both the top-k lists, Llb and Lub, store at most k sets at any
given time during the iteration and have a space complexity of
O (k). The size of the priority queue Qub is O (L). This gives
us the overall space complexity of O

(
|D| · |Q|+ L · C̄

)
.

VIII. EXPERIMENTS

We evaluate the response time, memory footprint, and
pruning power of filters of KOIOS on four real-world datasets
and test various parameter settings and query cardinalities. We
compare KOIOS with a baseline and a state-of-the-art fuzzy
set similarity search technique. The usefulness of semantic
overlap measure for search is evaluated by comparing to the
results of vanilla set overlap search. In our experiments, we
use the cosine similarity of the embedding vectors of tokens
using pre-trained vectors2 of FastText [28] as the function sim.

A. Experimental Setup

1) Datasets: We use four datasets: DBLP [29], Open-
Data [30], Twitter [31], and the public corpus of WebTables
(WDC) [32]. For DBLP, we consider papers from 2018 and
2019, and for each publication, we generate a set of white-
spaced words from the paper title and abstract. For each En-
glish tweet in the Twitter dataset, we generate a set consisting
of the distinct words in the tweet except the emojis and URLs.
The sets for OpenData and WDC are formed by the distinct
values in every column of every table. For all datasets, we
remove numerical values to avoid casual matches. We further
filter OpenData and WDC by discarding all sets that have less
than 70% coverage of pre-trained vectors. The characteristics
of the extracted sets are shown in Table I. The majority of
sets in WDC and Twitter are small but they contain more sets
compared to OpenData and DBLP. Unlike in OpenData, there
are some very frequent elements in WDC, which results in
excessively large posting lists in the inverted index. As a result,
the number of candidate sets in WDC during the refinement
is large, and updating the bounds of the sets is often more
expensive in WDC than OpenData.

2) Benchmarks: We generated one query benchmark, i.e.,
a collection of query sets, from each data set. The set cardinal-
ities in WDC and OpenData are highly skewed [8]. In order to
evaluate the performance depending on the query cardinality,
the benchmarks of WDC and OpenData are collections of
query sets selected from different cardinality ranges. The
ranges for OpenData are: 10 to 750, 750 to 1000, 1000 to

2https://fasttext.cc/docs/en/english-vectors.html

TABLE II: Average percentage of sets pruned using filters.

Datasets Refinement Postprocessing
iUB-Filter EM-Early-Terminated No-EM

DBLP 91% 5% 9.2%
OpenData 85.5% 2.1% 54.8%

Twitter 53.5% 0% 1.4%
WDC 89.2% 0.9% 9.8%

1500, 1500 to 2500, 2500 to 5k, and 5k to 32k; the intervals
for WDC are: 10 to 250, 250 to 500, 500 to 750, 750 to
1k, and 1k to 11k. For each interval, we sample 50 and 100
sets using uniform random sampling for OpenData and WDC
respectively. Sampling by interval prevents the benchmarks
from being biased towards small sets. Large intervals are used
for high cardinality sets due to the power-law distribution of
the set cardinalities [7]. Since DBLP and Twitter contain fewer
skewed sets, we do not create intervals and draw 100 random
sets using uniform sampling. We report the average of results
over the queries for each benchmark and interval.

3) Implementation: The inverted index (Is) is computed
on the fly and stored in an in-memory hash map. To gen-
erate the token stream we use the GPU implementation of
the top-k Faiss index [19] over high-dimensional vectors.
We query the Faiss index in batches of 100 elements. The
construction time of the inverted index is 1.5, 3.0, 1.3, and
80 seconds, and the construction time of Faiss index is 3.6,
9.5, 3.8, 12.5 seconds for DBLP, OpenData, Twitter, and WDC
respectively. We cache the similarity of returned vectors during
the refinement phase for reuse during the initialization of the
similarity matrix used in graph matching. For graph matching,
we use an implementation of the Hungarian algorithm [33]. To
compute the graph matching of sets in parallel during the post-
processing phase, we use a C++17-compatible thread pool
implementation [34]. Unless otherwise specified, the following
parameters are used in all experiments: similarity threshold
α = 0.8, k = 10, and partitions = 10.

4) Baselines: The baseline approach for top-k semantic
overlap search iterates over all candidate sets and computes
their bipartite graph matchings. Candidate sets are those that
have at least one element with similarity to any query elements
greater than the threshold α. We use the token stream to get
a list of candidate sets (baseline’s refinement phase) and use
a thread pool [34] to parallelize the computation of the graph
matching of all candidate sets (baseline’s post-processing).
Given the sheer number of sets and high frequency of elements
in WDC, computing exact graph matchings for all candidate
sets is infeasible. For example, we have 190, 679 candidate
sets for a query set with cardinality 53. To reduce the number
of candidate sets, we activate the iUB-Filter to assist with set
pruning. This is referred to as Baseline+.

5) System Specifications: All experiments are conducted
on a machine with 2 Intel® Xeon Gold 5218 @ 2.30GHz (64
cores), 512 GB DDR4 memory, a Samsung® SSD 983 DCT
M.2 (2 TB), 4 GPUs - TU102 (GeForce RTX 2080 Ti).

B. Response Time

We report the average response time, in seconds, across
benchmarks for all datasets in Table III (inverted index and
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Fig. 5: OpenData results: (a) response time, (b), (c) phase breakdown, (d) memory footprint.

(a) (b) (c) (d)

Fig. 6: WDC results: (a) response time, (b), (c) phase breakdown, (d) memory footprint.

TABLE III: Average response time and memory footprint.

KOIOS Baseline
Datasets Refinement Postproc Response Mem Response Mem

(sec) (sec) (sec) (MB) (sec) (MB)
DBLP 0.3 0.44 0.83 16 211 11

OpenData 7.19 6.9 18.6 69.6 101 102.5
Twitter 0.2 0.45 0.7 10 518 10
WDC 109 34.3 147 1, 775 1, 062 885

token index construction time are excluded from § VIII-A3).
We do not report the time for the timed-out queries (2500
seconds), therefore, we do not have enough data for some
intervals of WDC and OpenData. According to Table III,
KOIOS achieves at least 5x speedup over the baseline across
all datasets and at least 200x for DBLP and Twitter. We
present additional analyses of WDC and OpenData based on
query cardinality, since these datasets demonstrate a large set
cardinality skew.

Effect of Query Cardinality: Fig. 5a, 5b, 6a, and 6b show
the response time and the relative time spent in each phase
for OpenData and WDC, respectively. The time reported is
averaged over all queries in each interval. Because KOIOS
processes all partitions in parallel, we report the average
ratio of time spent by a partition over all queries in an
interval. We observe that the response time increases with
query cardinality, which entails a larger number of similar
elements and candidate sets returned by Is. The share of work
of WDC in the refinement is higher than OpenData, because
of its sheer number of sets and the high frequency of elements.

Comparing to Baseline: Fig. 5a and 6a show that KOIOS
particularly outperforms the baseline for medium to large
queries in OpenData and WDC. This emphasizes the pruning
power of the filters. Fig. 5a and 6a also report the number of
timed-out queries which are much higher for the baseline than
for KOIOS, since the baseline does not prune the large low po-

tential sets in the refinement phase. KOIOS times out for only
approximately 5% of OpenData queries and approximately
20% of WDC queries for small queries. This is due to the large
posting lists, which result in a significant number of sets during
post-processing as visible from Tables IV and V. We also
note that KOIOS times out for certain medium-large queries,
which is due to expensive graph matching. In summary, the
filter overhead of KOIOS during refinement clearly pays off
and significantly improves the runtime over the baseline. We
remark that KOIOS finds k × (number of partitions) sets sig-
nificantly faster than the time-out limit, whereas the majority
of large queries for WDC time out for the baseline. Although
the difference in response time of KOIOS and baseline is not
prominent for smaller queries of OpenData, KOIOS discovers
k × (number of partitions) sets as opposed to the baseline.

Comparing to Fuzzy Search: Fuzzy search techniques
including Fast-Join [11], [12] and SILKMOTH [13] cannot
solve the top-k overlap similarity search problem that we solve
in this paper: (1) Only specific character-level similarities
(Jaccard on white-space separated tokens of an element and
edit distance) between set elements are supported; semantic
similarity like cosine on word embeddings (as we use in
our experiments) cannot be applied. (2) Existing fuzzy search
algorithms are threshold-based: In order to retrieve the top-k
most similar sets to a given query, the threshold θ∗k is required,
but this threshold is not known upfront; in fact, it is one of the
challenges of top-k search and part of our solution to converge
to this threshold quickly.

While fuzzy search algorithms do not support semantic
element similarity, our KOIOS algorithm does support all syn-
tactic element similarity functions. We extend the threshold-
based fuzzy search to support top-k search as follows: (1) Pick



the threshold θ as the minimum θ∗k amongst all the queries.
Note this gives SILKMOTH an advantage as we pass the true
value of θ∗k (2) Compute the fuzzy search with threshold θ
and select the top-k most similar sets from the query result
(by maintaining a top-k priority queue).

We focus our study on SILKMOTH, which was shown
to widely outperform Fast-Join [13] and consider OpenData
and WDC datasets. Since sets in these datasets are extracted
from tables, the majority of elements consist of very few
words, which results in a zero edge weight for non-identical
elements in SILKMOTH. Therefore, in our experiments, we
consider Jaccard on 3-grams representation of each element
as an element similarity for both KOIOS and SILKMOTH.
To generate the token stream, we precompute elements in the
vocabulary that are similar to each query element with the
Jaccard similarity threshold of α = 0.8, using the set similarity
join techniques [9]. It takes 8 seconds to compute the token
stream for the benchmark.

We compare two versions of SILKMOTH: The first version,
SILKMOTH-semantic, adapts the SILKMOTH algorithm to
cover most of the functionality of KOIOS3; this adaption was
suggested by the original authors as a generic search frame-
work and excludes similarity function specific filters [13]. The
second version, SILKMOTH-syntactic, uses all indexes and
filters, including those that are applicable only to particular
similarity functions. We run the algorithms on 54 queries
randomly sampled from the benchmark queries of OpenData
to make sure we evaluate on small, medium, and large sets
and measure response time. The average response time of
KOIOS, SILKMOTH-syntactic, and SILKMOTH-semantic are
72, 141, and 400 seconds, respectively. KOIOS outperforms
both SILKMOTH-semantic, and SILKMOTH-syntactic by an
order of magnitude 6x(timed-out), and 2x respectively on all
query size ranges. SILKMOTH produces signatures from the
set elements and utilizes them to help decrease the candidate
space. The number of signatures increases when the number
of set elements increases (here by splitting into q-grams)
and SILKMOTH-syntactic times out due to the sheer num-
ber of viable candidates. KOIOS outperforms SILKMOTH-
syntactic because it operates on an ordered stream of set
element pairings based on similarity and is thus unaffected
by the number of elements. KOIOS outperforms SILKMOTH-
semantic because the pruning power of SILKMOTH is highly
dependent on filters that are specialized for certain similarity
functions.

C. Pruning Power of Filters

Table II reports the mean pruning power of different filters
used in both phases for all datasets and Tables IV and V zooms
into the pruning power for OpenData and WDC across query
cardinality intervals.

Refinement Phase: In OpenData and WDC, the number of
candidate sets increases with query cardinality because more

3SILKMOTH-semantic requires a metric token similarity function since the
triangle inequality is leveraged. KOIOS requires only symmetry and can also
deal with cosine similarity on token embeddings, which is not a metric.

posting lists from Is must be read. The pruning power of the
iUB-filter increases with the increase of query cardinality. This
is because of two reasons, first, there are a significant amount
of small cardinality sets in OpenData and WDC (Table I), that
are returned by the posting lists. Second, the iUB of each set is
calculated based on the number of remaining elements, thus
candidate sets with smaller cardinality relative to the query
set have a much smaller iUB as compared to the θlb and are
hence pruned. As shown in the Tables IV and V, although
the number of candidate sets increases with query cardinality,
the fraction that requires post-processing by KOIOS decreases
with query cardinality. For example, KOIOS requires the post-
processing of less than 5% of candidate sets for large queries
for WDC.

Post-processing Phase: Table II shows that the No-EM
filter demonstrates a higher pruning power than EM-Early-
Terminated, e.g., pruning more than half of sets for OpenData.
Note that the reported percentages refer to the sets that are
not filtered in the refinement phase. From Tables IV and V
we observe that the combination of No-EM and EM-Early-
Terminated have the highest pruning power for large queries.
For OpenData, the combination of these two filters prunes
more sets than in WDC. This is because an exact calculation
of semantic overlap during the post-processing increases θk
and results in pruning many sets.

TABLE IV: OpenData: #sets pruned by filters.

Refinement Phase Postprocessing Phase
Query Card. Candidate iUB-Filtered No-EM EM-Early EM

Sets Terminated
10− 750 1132 345 88 0 699

750− 1000 2557 2422 85 2 48
1000− 1500 2699 2571 83 4 41
1500− 2500 3440 3328 84 2 26
2500− 5000 3560 3451 82 4 23
> 5000 5706 5502 79 5 120

TABLE V: WDC: #sets pruned by filters.

Refinement Phase Postprocessing Phase
Query Card. Candidate iUB-Filtered No-EM EM-Early EM

Sets Terminated
20− 250 124, 217 60, 196 74 80 63, 867
250− 500 189, 665 186, 512 90 3 3, 060
500− 750 262, 947 261, 901 85 6 953
750− 1000 274, 695 273, 743 83 26 843
> 1000 402, 622 402, 332 84 3 203

D. Memory Footprint

KOIOS is an in-memory algorithm. We report the average
memory across benchmarks for all datasets in Table III. The
extended version of the paper contains an in-depth analysis of
KOIOS memory footprint. Fig. 5d and 6d show the memory
footprint of KOIOS and the baseline for OpenData and WDC.
The reported values are the average memory footprint of data
structures over successful queries in each interval. Note that
some data structures such as inverted index, token index, and
top-k lists have fixed sizes for all query intervals. To have the
whole picture of the memory footprint, the numbers reported
in these plots and Table III are the sum of the footprint of data
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Fig. 7: Parameter analysis of KOIOS on OpenData: Time vs. (a) number of partitions, (b) element similarity (α), and (c) result
size, (d) memory footprint vs. alpha.

structures used in the refinement phase and post-processing
phase, although the data structures used in the refinement
phase, except the top-k LB list (Llb), are freed up at the end
of the phase. Table III shows that KOIOS’ memory utilization
is comparable to the baseline.

Effect of Query Cardinality: In Fig. 5d and 6d, we observe
that the memory footprint increases linearly with the query
cardinality. This can be explained by the linear increase in the
number of candidate sets (Tables IV and V), thus, the size
of the query-dependent data structures: token stream, upper-
bound buckets, lower-bound data structure, and priority queues
increases as the query cardinality increases.

Comparing to Baseline: Fig. 5d and 6d show the average
memory footprint of the baselines and KOIOS. For small and
medium queries for both OpenData and WDC, the memory
footprint is similar. For large queries, KOIOS takes up less
memory for OpenData compared to WDC. This is because, the
iUB-Filter prunes most of the candidate sets, hence reducing
the size of the post-processing data structures. Note that for
the baseline we do not have enough data for WDC on large
queries as almost all queries time out.

E. Quality of Results

To evaluate the quality benefit of semantic overlap, we
compare the top-k semantic search results with the top-
k syntactic search results on OpenData, using the vanilla
set overlap. Fig. 8 reports the scores for the k-th set in
the top-k lists. Comparing the syntactic overlap of the k-
th set in the top-k syntactic list with that of the top-k
semantic list, we observe that semantic overlap finds sets
with lower syntactic overlap (fewer exact matching elements)
but higher semantic overlap (more elements with semantic
similarity). These are sets that often contain syntactically
dirty elements, for example (squirrel, squirrell) and
(konstantine, konstantin), or syntactically mismatch-
ing elements yet semantically similar elements, for example
(Leeds, Sheffield). We also investigated the sets returned
by the two searches and report the size of the intersection
of results. Fig. 8 shows that semantic overlap finds sets that
cannot be otherwise discovered by the vanilla overlap. In
particular, for the smallest interval vanilla overlap misses 50%
of the results. This shows how semantic overlap can help find
sets that would not be part of the top-k result if only syntactic

Fig. 8: Comparison of vanilla and semantic overlap.

overlap was considered. Note that KOIOS returns an exact
solution as long as the index returns exact results.

F. Analysis of Parameters

Our algorithm uses three parameters for search: 1) an ele-
ment similarity threshold (α), 2) the number of data partitions,
and 3) a user-provided number of result sets (k). We performed
an empirical study of the impact of these parameters on
the response time of KOIOS. For this set of experiments,
we choose 100 queries from the benchmark of OpenData at
random. Since the set cardinality in data repositories follows a
Zipfian distribution [7], [8], random sampling from benchmark
intervals prevents from having a benchmark that is heavily
biased to smaller query sets. Fig. 7 shows the average response
time and the breakdown of the ratio of refinement and post-
processing time of queries for various parameter values.

Number of Partitions: In Fig. 7a, we fix k = 10 and
α = 0.8 and vary the number of partitions. The response time
decreases as the number of partitions increases. This is because
a larger number of partitions results in a smaller number of
sets to process per partition. Since partitions are processed
in parallel, the response time decreases with more partitions.
Since sets are randomly assigned to partitions, partitions have
the same expected number of sets. The top-k result of all
partitions are merge-sorted after all partitions finish. However,
the merging cost is negligible compared to the overall runtime.

In addition to the average response time, Fig. 7a reports
the average percentage of work in the refinement and post-
processing of a partition. One interesting observation is that
as the number of partitions increases, the percentage of post-



processing sets becomes smaller. This is because, with a large
number of partitions, more sets are considered per time unit
across all partitions and θlb grows quickly. As a result, iUB-
Filter has higher pruning power.

Element Similarity Threshold: In Fig. 7b, we fix k = 10,
the number of partitions to 10, and vary the value of α. We
observe that the higher α, the smaller the average response
time for a query. A smaller α means more elements in
the vocabulary are potentially considered for matching with
element queries, and as a result, more candidate sets are
considered by the algorithm. While the pruning power of
refinement filters is independent of the value of α, the cost
of graph matching grows with the number of edges in a
bipartite graph: smaller α values result in more edges in the
graph and therefore higher matching time. Fig. 7d also shows
that increasing α results in a slight increase in the memory
footprint for KOIOS. This is because by increasing α, we
get a smaller token stream and a decrease in the number of
candidate sets. We converge to a smaller value of θlb which
results in more sets reaching post-processing; this results in
larger post-processing data structures and hence the increase
in the memory footprint.

Result Set Cardinality: In Fig. 7c, we fix the number of
partitions to 10 and α = 0.8 and vary the value of k. For a
given value of k in this plot, each partition runs a top-k search
and the final results from partitions are merged, i.e. for k = 50,
we merge ten top-50 lists returned from ten partitions. The
observation of a decrease in average response time with the
increase of k is counter-intuitive since higher k means lower
θlb and lower pruning power of the iUB-Filter. However, the
response time decreases because the average post-processing
work decreases with the increase of k.

The response time and the post-processing work behavior
can be explained by looking at the number of sets considered
and those that reach post-processing. With a large k, since
the iUB-filter prunes a lot of sets, those that reach the post-
processing phase end up in the top-k result, and many of
them are filtered using the EM-Early-Terminated-Filter and
are quickly added to the top-k result.

IX. RELATED WORK

(Fuzzy) Set Similarity Search The majority of works in
set similarity search take into account syntactic measures like
containment and Jaccard on sets of tokens and use a threshold
search [9], [35]. To avoid computing pairwise similarities of
set, the common technique is to apply a filter-verification
paradigm with a core step being prefix-filtering [36], [36],
[37]. PPJoin extends prefix filtering by incorporating a posi-
tional filtering technique that uses token ordering information
to reduce candidate sizes even further [38]. There has also been
work on partition-based search, where the goal is to partition
the data to allow for faster search, for example, SSJoin and
GreedyPlus [39], [40].

Table Join Search Most existing join search techniques
consider equi-join and use (normalized) cardinality of the
overlap of sets of attribute values as joinability measure [7],

[8], [10], [41]–[43]. JOSIE combines filtering techniques from
the set similarity search literature to solve the join search
problem using vanilla overlap [8]. A common way to obtain
approximate join search results is to construct an LSH index
on set signatures generated using hash functions such as
MinHash [7], [10], [20].

Semantic Techniques PEXESO is a threshold-based set
similarity search technique based on an extension of the vanilla
overlap [44]. In PEXESO, two elements are considered as
“matching” if they have a similarity greater than a user-
specified threshold. The set similarity is then defined as
the number of elements in a query that has at least one
matching element in a candidate set, normalized by the query
cardinality. This implies that elements can participate in many-
to-many matchings such that the vanilla overlap cannot be
expressed as a special case of the proposed measure. SEMA-
JOIN takes two sets of values from join columns as input
and produces a predicted join relationship (many-to-one join
on cell values) [14]. To do so, SEMA-JOIN finds the join
relationship that maximizes the aggregate pairwise semantic
correlation. Relying on a big table corpus (100M tables from
the web), the statistical co-occurrence is used as a proxy for
semantic correlation. The intuition is that two values can be
joined semantically (e.g., GE and General Electric) if
there exists significant statistical co-occurrence of these values
in the same row in the corpus (row co-occurrence score).
Moreover, pairs of pairs are required to be semantically
compatible, i.e., they should co-occur in the same columns in
the corpus (column-level co-occurrence). Finally, to join two
columns, SEMA-JOIN aims at maximizing the aggregate pair-
wise column-level and row-level correlation. Unlike KOIOS ,
which solves the search problem of finding sets that can be
joined with a query set, SEMA-JOIN finds the best way of
joining column elements after discovery.

X. CONCLUSION

We defined the semantic overlap measure. To solve the top-
k semantic overlap search problem, we introduced KOIOS, an
exact and efficient filter-verification framework with powerful
and cheap-to-update filters that decrease the graph-matching
computation to less than 5% of the candidate sets. We demon-
strated that KOIOS has a low response time and memory
footprint in experiments on four different datasets. In our
future work, we plan to expand the semantic overlap to
instances with many-to-1 mappings to cover noise or spelling
variations within the query, for example, United States
of America and United States can both be mapped to
USA with equal similarity.
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