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ABSTRACT

Entity matching is one of the first tasks in data integration pipelines.
The new generation of entity matching techniques is heavily data-
and learning-driven and potentially susceptible to injecting bias
from data and pre-trained models into downstream tasks. We pro-
pose FAIREM, an open-source library for auditing the fairness of
learning-based entity matchers and providing explanations for the
underlying reasons of unfairness. FAIREM presents a suite of fair-
ness measures and paradigms for evaluating the output of entity
matchers. FAIREM has a three-level architecture. The data layer
allows a user to explore the space of subgroups in a hierarchical
manner and choose subgroups of interest for auditing. In logic layer,
the fairness of the output of a matcher is evaluated using various
fairness measures. FAIREM supports single and pairwise fairness
for entity matching tasks. Finally, in the presentation layer, FAIREM
aggregates fairness results and provides insights on the overall
fairness of the matcher as well as potential explanations for the un-
fairness of certain subgroups. We discuss interesting use-cases and
findings from auditing the fairness of two state-of-the-art matchers,
DeeEPMATCHER and DITTO, on three benchmark data sets.
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1 INTRODUCTION

In data cleaning and integration, entity matching is the task of iden-
tifying records from one or more data sources that refer to the same
real-world entity. Entity matching technologies are key to solving
a variety of complex tasks (e.g., building a knowledge graph and
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integrating heterogeneous data sets) and have been widely studied
for over 50 years by the statistics, data management, NLP, and ma-
chine learning communities. Depending on the heterogeneity of
data (e.g., the same information can be represented in structured
fields or unstructured text) and quality of data (e.g., missing or
erroneous values in the records), entity matching can be a difficult
task. For these reasons, there is no single universally best matching
algorithm [28] and effective entity matching remains a challenging
task.

Fortunately, recent advancements in data technologies, espe-
cially in machine learning and Al, have provided promising solu-
tions for complex entity matching tasks, significantly improving the
effectiveness of these tasks. Modern entity matchers treat a match-
ing task as a binary classifier on pairs of records [6, 29, 34]. The use
of ML in the entity matching task has been shown to improve ac-
curacy [6]. Modern entity matching systems successfully use deep
learning for blocking [15] and leverage pre-trained transformer-
based language models [29] and embedding vectors [34] for match-
ing via fine-tuning. However, factors such as data quality and model
choice may encode unintentional biases towards certain groups
resulting in systematic disparate impact. That is, records from some
groups may match at a significantly lower rate than records from
other groups, with real-world consequences such as voter suppres-
sion or underestimating the prevalence of certain demographic
groups. For instance, the use of pre-trained models gives rise to the
possibility of propagating the known biases of pre-trained language
models [30] into the matching outcome. Moreover, because learning-
based entity matching systems often perform fine-tuning [29, 34],
the distribution and sufficient representation (coverage) of groups
of interests in the training data becomes crucial.

A systematic audit for unfairness is the first step to advance an
entity matching algorithm towards being responsible. Assuming
that no intentional bias is involved in creating a model for an
application, data scientists should ensure that it is performing well
enough for various groups or intersections of them before the model
is operationalized.

We present FAIREM, an evaluation platform for benchmarking
and auditing the fairness of learning-based entity matchers. Our
goal is to assist researchers and data practitioners in finding answers
to the following questions.

e Is a matcher unfair/fair towards a group or sub-group of
interest?

e What is the explanation for the unfairness of a matcher
towards a group?
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The main difference between the traditional notion of classifi-
cation fairness with the notion of matching fairness lies in that in
entity matching two corresponding records may belong to different
groups. For example, consider the iTunes-Amazon data set with
genre as its sensitive attribute. Given a pair to match, we may have
one record belonging to Country and another record belonging to
Pop. One audit question could be whether a matcher performs well
for Country artists. Another question could be whether a matcher
performs well for songs that belong to both Country and Pop genres.
Similarly, can the model perform well when matching Country with
Pop songs? To model this difference, we define single and pairwise
fairness over groups and intersectional subgroups for matching
tasks.

To audit the fairness of a matcher, we re-purpose the existing
fairness measures defined for entity matching tasks. Some of these
measures do not apply to pairwise fairness under certain circum-
stances where true label of an entity pair being a match implies the
equality of their groups. For example, in the DBLP-ACM data set,
two publications cannot be a true match if they are published in
different venues. In such scenarios, measures such as True Positive
Rate [7] do not apply, because when the groups of two entities to
be matched are different, it is impossible for the ground-truth to be
match, therefore number of true positives is always zero.

FAIREM is a three-layer framework that provides a separation of
functions across data layer, logic layer, and presentation layer. The
data layer identifies groups and subgroups in sensitive attributes
based on which the matcher should be evaluated. In particular, we
differentiate between different types and number of sensitive at-
tributes that impact the grouping, and provide an intersectional
hierarchy for specifying the subgroups. The data layer also intro-
duces a standard encoding that unifies grouping over different types
and numbers of sensitive attributes and intersectional subgroups.
Given a workload of a matcher’s outcome, the logic layer evaluates
the unfairness of the matcher with respect to the groups identified
in the data layer and different fairness notions, both on single and
pairwise fairness. To have a holistic view of a matcher, FAIREM
provides a way of combining fairness results on groups of interest
using aggregate functions. The presentation layer of FAIREM is re-
sponsible for aggregating fairness results, and to provide statistical
testing analysis using multiple workloads of a matcher’s output.
Having identified unfairness towards a group, FAIREM also enables
further investigation of the sources of this unfairness by providing
explanations based on 1) particular subgroups that are unfair, 2) the
degree of difference (distance) between problematic pairs, and 3)
synergies of other fairness measures with the measure of interest.

Using FAIREM framework, we performed an extensive audit of
two well-known entity matchers, DrtTo [29] and DEEPMATCHER [34]
on three benchmark data sets. The highlights of our observations
are as follows.

e It is often the case that some subgroups are not sufficiently rep-
resented in test data to be audited, separately.

o Using pre-trained word embeddings and pre-trained transformer-
based language models, in Amazon-iTunes music data set, caused
an unfairness for genres such as country, where same artists have
similar titles for different songs. That happened because the
vector representation of the songs become very similar, causing

the incorrect match. For example, DiTTO mistakenly matched
“Tequila loves me” and “likes me”, both by K. Chesney. Besides,
both models had lower accuracy (accuracy disparity) for one
genre. For DEEPMATCHER, it was due to the fact that is with a
higher probability predicted match pairs in that group as not
match. Finally, other model details, such as (a) considering equal
weights for different features in DEEPMATCHER and (b) putting
too much weight on one feature (song title) in D1TTO, caused
other types on unfairness for different genres.

o Despite being well-presented in the training data, both matchers
were unfair towards non-English languages, in our experiments
on a shoes data set. Such unfairnesses can be explained by the
unfairness of pre-trained language models used by the matchers.

e Our experiments on the DBLP-ACM data set, using multiple
workloads, confirmed that both matchers were fair to all (DB)
venues (present in the data set) with respect of all fairness mea-
sures. The reason was that the input data was not biased towards
certain venues (and the training process and model details did not
add unfairness), which resulted in fair matchers that performed
equally good for different venues.

2 PRELIMINARY
2.1 Entity Matching

Given two sets of entities A € S4 and B € Sg from data sources
Sa and Sp, the entity matching problem is to identify all corre-
spondences between entities in A X B that correspond to the same
real-world object. A correspondence ¢ = (e;, ej, s) interrelates two
entities e; and e; with a confidence value s € [0, 1] that indicates
the similarity of e; and e; or the confidence of a matcher about e;
and e; referring to the same object. [28]. To decide whether the
entity pair of ¢ = (e;, e}, ) is a match or non-match, matchers often
apply a threshold on s [6, 53]. For auditing, we decouple the choice
of a threshold from the outcome of the matching and consider
the outcome of an entity matching task as pairs of matching and
non-matching entities. Formally, we consider the following entity
matching problem in this paper:

DEFINITION 1 (ENTITY MATCHING PROBLEM). Consider two sets
of entities A € S4 and B € Sg from data sources Sy and Sg. For
every pair of entities (ej,ej) € A X B, let y;j be the ground truth
label indicating if e; and e; refer to the same object. Given all pairs
(ei, ej) € A X B, the entity matching problem is to predict y;; with a
label hij. That is, h;j refers to the decision of the matcher about the
label of e; and e; (match or non-match).

In a fairness-sensitive setting, entities are accompanied with
sensitive attributes (e.g. genre, language, race, etc.). Let A =
{A1,...,Ap} be the set of sensitive attributes, dom(A;) be the do-
main of Aj,and G = {91, . . ., gm} be the set of all groups of interest,
ie. G = Ua,eq dom(A;). The mapping L(e;) relates an entity to
its associated groups G; C G. In other words, G; is the group that
e; belongs to.

Given two sets of entities A € S4 and B € Sg from data sources
S and Sg, and the set [(ei, ej, Gi, Gj, hij, yij)] V(eie;) €AXBs FAIREM
presents a framework for auditing the fairness of a matcher with
respect to groups and combination of groups (subgroups), as we
shall elaborate in the following.



2.2 Fairness

There is no singular definition for fairness. It all depends on the
type of task we target to solve and the numerous kinds of bias
that can exist in data. Since the focus of FAIREM is mostly on
auditing learning-based entity matching techniques, we provide
a general overview of fairness definitions from the classification
perspective. At a high level, fairness definitions can be viewed from
three perspectives: group fairness, subgroup fairness, and individual
fairness [7].

The most granular notion of fairness is individual fairness that re-
quires similar outcomes for similar individuals [14]. The more pop-
ular perspectives of fairness for learning models, group/subgroup
fairness, require similar treatment for different groups. A model
satisfies some fairness constraints if the model has equal or simi-
lar performance (according to some fairness measure) on different
subgroups. The focus of this paper is on group/subgroup fairness.

Most of the group fairness measures belong to one of the
three categories of Independence, Separation, Sufficiency, and Cau-
sation [3, 7]. A model satisfies independence if its outcome is inde-
pendent from the sensitive attributes. Measures such as Statistical
Parity fall under this category. Separation is satisfied when the out-
come of the model is independent from the sensitive attribute(s)
conditioned on the target variable. The well-known measure in this
category is Equalized Odds [23]. On the other hand, Sufficiency is
satisfied if under the same model outcomes, sensitive attribute(s)
and the true outcome are independent and it can be measured with
Predictive Parity. Causation is however somehow different from
the rest and focuses on the causal relationship between attributes
for instance when an attribute A affects attribute B, which in turn
affects attribute C. Domain experts are required to analyze a model
in terms of Causality. Since, in FAIREM, we only assume access to
a matcher’s decisions and true labels and not the whole data set,
we choose to not to focus on Causal fairness in our audit.

Falling in between individual and group fairness, subgroup fair-
ness (also known as intersectional fairness) metrics measure fair-
ness (according to the above definitions) when groups are defined
over intersection of values of multiple sensitive attributes (e.g.
white male, white female, black male, and black female).
In § 3, we describe how subgroups are defined and encoded in
FAIREM and in § 4.2, we describe how various group/subgroup
fairness measures can be applied to entity matching tasks.

Regardless of the definition of fairness chosen to evaluate a
model, there are challenges and domain-specific choices that need
to be taken care of. Except for Equal Employment Opportunity
Commission’s 80% rule [12] that has been formalised as a bias
measure, called Disparate Impact, there are no official guidelines
for other measures. As a result, a model should be audited for
groups of interest based on user-provided thresholds. Finding the
subgroups for which a model is unfair is challenging. One reason
is that a model can be fair with respect to any group individually
but unfair towards a subgroup when fair groups are combined
(e.g. a model that is fair both to female and black, can be unfair to
female black subgroup). Identifying groups to which a model is
discriminatory is particularly challenging due to the large space of
possible subgroups. In § 3, we describe a hierarchical paradigm to
exploring the space of all subgroups.
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Figure 1: FAIREM Architecture.
2.3 Fair Entity Matching

Fairness has so far been studied in many machine learning appli-
cations such as classification/regression/ranking tasks, recommen-
dation systems, etc. Despite the inherent differences among these
applications, they share a common characteristic which is the sin-
gularity of the object of reference. At a glance, entity matching may
seem like a typical classification task, however, there are some dis-
tinctions as entity matching is a pairwise task by character, defined
over a pair of entities. Consequently, evaluating learning-based
entity matchers is different from classification models as the per-
formance of the model over groups from both entities need to be
considered. For this very reasons, we also need to repurpose the
group fairness measures for the entity matching task.

2.4 FAIREM Architecture

FAIREM is a three-layer framework that given entity matching test
data enables human-in-the-loop exploration of groups of interest
in a matching test data set, audit of the fairness of groups, and ex-
plain group unfairness. Figure 1 shows the architecture of FATREM.
The architecture provides a separation of functions in the three
layers: data, logic and presentation layers. The three-layer architec-
ture facilitates upgrade and maintenance of each layer independent
of others. While the initial input to this architecture, particularly
to the data layer, is an entity matching test data set containing
pairs of (e;, ej, Gi, Gj, m,y) in a standard format, the user can di-
rectly interact with each layer by specifying parameters and asking
questions.

The main goal of data layer is to identify and encode groups of
interest. We allow users to explore groups and subgroups through
a hierarchical data structure. Given the type and number of sen-
sitive attributes and cardinality of each, the data layer presents
a standardized encoding of sensitive attributes that is capable of
handling different possible cases. The logic layer aims at evaluating
user-specified fairness measures over the groups identified in data



layer. Finally, in the presentation layer, the evaluation results from
logic layer are aggregated, statistically analyzed for the user. In
addition to fairness analysis, the presentation layer enables users to
identify various types of explanations for the sources of unfairness.
In the following sections, we discuss each layer in detail.

3 DATA LAYER: GROUP ENCODING
3.1 Group Selection

The first step in auditing an entity matcher for fairness is identi-
fying meaningful groups/subgroups in sensitive attributes based
on which the matcher should be audited. Sensitive attributes are
attributes for which a matcher is likely to exhibit bias. These at-
tributes are identified by the user and their values are associated
to entities prior to being passed to the data layer. More concretely,
an input file from matcher M to the data layer includes entity ids,
the value of each entity for sensitive attributes, the decisions of
M as well as true labels for the entity pairs. Note that FAIREM
requires access to the sensitive attributes and ground truth values
for entities.

Depending on the type, cardinality and number of sensitive
attributes multiple fairness cases may happen:

o Single attribute with binary values: In this case, fairness is studied
on a single sensitive attribute. Each entity belongs to one of the
two groups. e.g. gender={male, female}.

o Single attribute with multiple (exclusive) values: In this case, fair-
ness is studied on a single sensitive attribute. Each entity belongs
to one of the multiple demographic groups. e.g. gender={male,
female, transgender, non-binary, other}.

o Single setwise attribute: In this case, fairness is studied on a single
sensitive attribute. Each entity can belong to a subset of the
universe of possible values of an attribute. For example, assuming
genre={Pop, Rock, Jazz}, an entity e can have multiple genres:
genre(e)={Pop, Rock}. Notice that in this case, the identified
groups can have overlapping values, e.g. for entities e; and ey,
genre(e;)={Pop, Rock}, genre(e;)={Pop, Jazz}.

Multiple attributes: In this case, fairness is studied on the

intersection of multiple sensitive attributes. The values could

be either one or a combination of the three cases discussed
before. An example includes the groups defined on intersection
of (single setwise attribute) genre and (binary attribute) gender:

{male-Pop, male-Rock, male-Jazz, female-Pop, female-Rock,

female-Jazz, male-Pop-Rock, male-Pop-Jazz, male-Rock-Jazz,

female-Pop-Rock, female-Rock-Jazz,
male-Pop-Rock-Jazz, female-Pop-Rock-Jazz}.

female-Pop-Jazz,

For single attribute with binary or multiple values, the space of
groups if interest is the number of values in the domain of the
corresponding attribute. For example, a matcher is audited for
male, female, ... separately. Single setwise attribute and multiple
attributes allows us to define intersectional subgroup with vari-
ous combinations of groups from different sensitive attributes. We
represent the space of possible subgroups in a hierarchical data
structure, where the first layer includes groups of all attributes.
Level k includes a set of k non-overlapping groups created by com-
bining groups from k different attributes with binary or multiple
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Figure 2: Intersectional subgroup hierarchy for single setwise
and multiple attributes

values, or k — 1 groups from a setwise attribute with one group
from a binary or multi-value attribute, and so on.

Example 1: Figure 2 shows the intersectional subgroup hierarchy
of sensitive attributes gender and genre for a data set matching
songs of different artists. Note that gender is a binary attribute and
genre is a setwise attribute. The level-2 of this hierarchy includes all
combinations of groups from gender and genre in level-1. Level-3
enumerates 2-combinations of the domain of genre with groups
from gender. O

Note that a subgroup hierarchy represents the space of groups
and does not mean a data set must or do contain all these groups. In
addition to enabling fairness audit on a particular group selected by
a user, FAIREM allows batch auditing subgroups of each level. That
is, as we will show in our experiments, the fairness of a matcher is
evaluated and compared with respect to all subgroups of a particular
level selected by a user.

Next, we describe how FairEM encodes the input data to interact
with other layers of the framework.

3.2 Group Encoding

Having created the space of groups, the next challenge is to develop
a standard notation to unify all of the aforementioned attribute-
value cases. To do so, we propose an encoding that summarizes
sub-groups and use this encoding to represent individual entities
and entity pairs.

Given a set of sensitive attributes A = {Aj, ..., A,} and value
domains dom(A;) for attributes A;, G = {91,...,9m} denotes
the set of all level-1 groups, i.e. G = Uy, e dom(A;). We rep-
resent a subgroup s of level k (k-combination) consisting of groups
s = {g1,...,9r}, with a binary encoding s = (ay,...,am), where
m = |dom(A1)| X ...|dom(A;)|) and a; is one if g; € s and is zero
otherwise. Note that for a k-combination subgroup, exactly k en-
tries of s get the value one. We represent an entity e associated
with groups G C G with a binary encoding (b1,. .., by), where
m = |dom(A1)| X ...|dom(A;)|) and b; is one if g; € G and is zero
otherwise.

Example 2: Consider attributes genre and gender of Figure 2. As-
suming a lexicographical order on all groups, the encoding of entity
e with associated groups G={Female, Pop, Rock} is (1, 0,0, 1, 1). The
encoding of a level-2 subgroup s={Female, Pop}is (1,0,0,1,0). O

Entity encoding is the output of the data layer and will be passed
as an input to the logic layer, where fairness of a matcher is investi-
gated with respect to a subgroup. An entity e with groups G belongs
to subgroup s if s C G. Given an entity encoding e = (b1, ..., bm)
and a subgroup encoding s = (ai,...,am), we say e belongs to



subgroup s if s AND e == s, i.e. the entity belongs to every group
that define the subgroup s.

Example 3: Continuing with Example 1, a pop-rock entity e from a
female singer belongs to subgroup Female-Pop and is counted in the
audit of this subgroup. Following the same convention, the encoding
of an entity pair e;, e; is the concatenation of the encodings of e;
and e;. O

4 LOGIC LAYER: FAIRNESS COMPUTATION

In the data layer, we are concerned with the selection and proper

representation of groups. Logic layer is where the actual evaluation

of the output of an entity matching task takes place. The input to the
logic layer is a workload w of n tuples each having a correspondence

t = (ei, ej, h,y), where h is a binary variable indicating the result of

entity matching (match or non-match) for entities with encodings

e; and ej, and y is a binary variable indicating the ground-truth for

matching. A workload is defined as a test set of tuples for evaluating

an entity matcher.

Given the pairwise nature of entity matching tasks, there are
two ways to audit entity matchers:

o Single: In the single fairness, the performance of a matcher is eval-
uated for one subgroup s against either entity in a pair. Given a
correspondence (e;, ej, h, y) and a subgroup s of interest, FAIREM
considers the correspondence legitimate, if either e; or e belong
to subgroups s. Note this can be easily verified using our binary
encodings.

e Pairwise: In the pairwise fairness, the performance of a matcher
is evaluated for a pair of subgroups s, s” against both entities in a
pair. Given a correspondence (e;, e}, h, y) and a pair of sub-groups
s, s” of interest, FAIREM considers the correspondence legitimate,
if either e; or e; belong to subgroups c. if e; belongs to s and
ej belongs to s, or vice versa. From an encoding perspective,
FAIREM concatenates the encodings of subgroups s and s into
a vector ¢ and the encodings of e; and e; into a vector e and
validates vector e belongs to ¢ with both directions of (s,s”) and
(s’, s).

In single and pairwise definitions, we consider the entity match-
ing task to be symmetric. We remark that these definitions can be
extended to ordered single and ordered pairwise fairness where
the subgroups are defined on left or right entities. In this paper, we
focus on non-directional single and pairwise fairness.

Given a subgroup of interest, the logic layer summarizes the
workload w into a confusion matrix, which is later used in comput-
ing various fairness measures.

4.1 Creating Confusion Matrix

When auditing with single and pairwise fainress, each correspon-
dence (e;, ej, m, y) corresponds either to True Positives (TPs), False
Positives (FPs), False Negatives (FNs), or True Negatives (TNs).
Note that the result is counted both for the group(s) of e; and the
group(s) of e;. This is unlike regular classification where every row
corresponds to one entity and hence is counted once. It is worth
describing how a confusion matrix is created for an entity matching
task through an example.

Example 4: Consider an input data set from matcher M shown
in Table 3, where columns id; and idy contain entity encodings,
column A is the output decision of M, and column y is the ground-
truth. Comparing columns h and y, we add and populate column
Result for each entity pair. Note that this is independent of the
audit subgroup of interest. Consider the simple case of having two
groups G = {g1,92}. An entity e; in id; would be represented with
an encoding of size 2. Suppose we would like to audit single fairness
for groups g; and g. We describe how the confusion matrices of
these groups are created. Consider the first row in Table 3a and it
happens to be an FP. Since e; and ez both belong to subgroup g1,
the value two will be added to the count of FPs in the confusion
matrix of g;. However, in the second row which happens to be a TN,
e3 belongs to g2 while e4 belongs to g;. Thereby, we will add one to
both TN values of the confusion matrix corresponding to subgroup
g1 and g2. We repeat the same procedure for rows three and four.
The completed confusion matrices are shown in Figures 3b and 3c.

[m]
H id ‘ idy ‘encl(91,92)‘encz<91,92)‘ h ‘ y ‘ Result H
e; | e (1,0) (1,0) M| N FP
e3 | ey (0,1) (1,0) N | N TN
e ey (1,0) (1,0) M| M TP
e e3 (1,0) (0,1) ‘N’ ‘M’ FN
()
Actual Actual
y=‘M’ y=‘N’ y=(M) y=(N’
g h=‘M’ [ TP=2 | FP=2 "Ej h=M’ [ TP=0 | FP=0
2 h=N" | FN=1 | TN=1 2 h=N’" | FN=1 | TN=1
] =
2 2
~ ~
(b) ()

Figure 3: (a) Matching Results (b) Confusion Matrix of g; (c)
Confusion Matrix of g;.

4.2 Entity Matching Fairness Measures

As explained in Section 2.2, depending on the context of an entity
matching task at hand, proper fairness measures should be em-
ployed. More precisely, the adopted fairness measures depend on
the importance of TPs, FPs, FNs, and TNs in the problem context
and how forgiving we can be towards each.

We note that some measures cannot be applied in pairwise fair-
ness scenarios where conceptually the equality of groups restricts
matching results. In some scenarios two entities with different
groups can never be considered as a match in the ground-truth. For
instance, in a matching task defined between DBLP and ACM publi-
cations, two entities with different venues (after standardization)
and years are never a true match. More concretely, when pairwise
fairness is evaluated on subgroups with non-overlapping groups,
TPs and FNs are always zero, therefore, fairness measures that rely
on TPs and FNs become inapplicable.

In what follows, we present a suite of fairness measures, based
on notions of fairness in classification [7] and repurposed for entity
matching, for auditing an entity matcher M with respect to a set G
of k-combination subgroups. Let (e, e”) be the output of matcher



M (match (‘M’) or non-match ('N’)) and y be the ground-truth on
entities e and e’.

e Accuracy Parity (AP) equalizes matchers’s accuracy across
different subgroups:

Vgi € G, Pr(h(e.¢’) = ylgi) = Pr(h(e.e’) = y) 1)

Accuracy parity is a useful measure in the contexts where the
impact of FPs and FNs are similar. This measure extends to both
single and pairwise fairness definitions. Alternatively, instead of
accuracy, one can consider the misclassification rate parity:

Vgi € G.Pr(h(e.e) # y | gi) = Pr(h(e.e) # y) @)

e Statistical Parity (SP) makes the independence assumption of
the matcher from groups (h L G). Under statistical parity [14],
the probability of a matcher outcome is equal or similar across
different groups:

Vgi € G, Pr(h(e, e)="M | gi) = Pr(h(e, e’) =M) 3)

Statistical parity is not an applicable fairness measure in dedu-
plication tasks using entity matching since equal probability of
getting a match given a subgroup may not be meaningful, how-
ever, this measure is useful for entity matching in table joins.
Furthermore, this measure extends to both single and pairwise
fairness definitions.

e True Positive Rate Parity (TPRP) also known as Equal Oppor-
tunity or Sensitivity is a practical measure when predicting the
positive outcome correctly is crucial and FPs are not costly:

Vg € G, Pr(h(e.¢’) = ‘Mlgi.y = ‘M) ~ Pr(h(e.’) = My = ‘M)
4
This measure is only meaningful for single fairness and is not
definable in pairwise fairness. The reason is that when the groups
of two entities to be matched are different, it is impossible for
the ground-truth to be match, therefore number of TPs is always
Z€ro.
o False Positive Rate Parity (FPRP) is a useful measure in con-
texts that minimizing costly FPs matter most:

Vgi € G, Pr(h(e,e’) = "M’|gi,y = "N’) = Pr(h(e,e') = "M|ly ="N’)

)

This measure extends to both single and pairwise fairness defini-
tions.

o False Negative Rate Parity (FNRP) is a useful measure in

contexts that FNs are costly and the overweighing source of
error:

Vgi € G, Pr(h(e,e’) = 'N’|gi,y = "M’) = Pr(h(e,e’) = 'N’ly ="M’)
(6)
For the same reasons, this measure is also only meaningful for
single fairness and does not extend to pairwise fairness. Entities
with different groups can not have a match ground-truth.
e True Negative Rate Parity (TNRP) also known as specificity
measures model’s ability to correctly identify negative results:

Vg; € G, Pr(h(e,e’) = ‘N’|gi,y = ‘N’) =~ Pr(h(e,e’) = ‘N’|y = ‘N’)

(7)

This measure extends to both single and pairwise fairness defini-
tions.

H Fairness Measure ‘ Single ‘ Pairwise H

Accuracy Parity
Statistical Parity
True Positive Rate Parity
False Positive Rate Parity

False Negative Rate Parity
True Negative Rate Parity
Equalized Odds
Positive Predictive Value Parity
Negative Predictive Value Parity
False Discovery Rate Parity
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False Omission Rate Parity

Figure 4: Entity matching fairness measure extendability in
single and pairwise fairness. * Not extendable to domains
where a true match requires the overlap of groups of entities,
otherwise extendable.

e Equalized Odds (EO) also known as Positive Rate Parity is prac-
tical in contexts that correctly predicting positive outcomes and
minimizing costly FPs are both of high importance:

Vgi € G, Pr(h(e.e’) = "M'|gi,y = "M’) = Pr(h(e,e’) = "M’ly = "M’)

Pr(h(e,e’) = ‘M’|gi,y = ‘N’) = Pr(h(e,e’) = ‘M’|ly = ‘N’)
8

This measure is also only meaningful for single fairness and does
not extend to pairwise fairness.

e Positive Predictive Value Parity (PPVP) guarantees equal
chance of success given positive prediction for all subgroups:

Yg; € G,Pr(y = ‘M’|h(e,e’) = ‘M’, g;) = Pr(y = ‘M’|h(e,e’) = ‘M)
©)
This measure is also only meaningful for single fairness and does
not extend to pairwise fairness.
e Negative Predictive Value Parity (NPVP) ensures equal
chance of success given negative prediction for all subgroups:

Vgi € G.Pr(y = ‘Nlh(e.€’) = ‘N, i) = Pr(y = ‘N'lh(e,e') = ‘N’)
(10)
This measure is also only meaningful for single fairness and does
not extend to pairwise fairness.
o False Discovery Rate Parity (FDRP) makes the independence
assumption of true match/non-match decision from subgroups,
conditional on the match decision (y L G| h(e,e’) = ‘M’).

Yg; € G,Pr(y = ‘N’|gi,h(e,e’) = ‘M’) =~ Pr(y = ‘N’|h(e,e’) = ‘M’)
(11)
This measure is also only meaningful for single fairness and does
not extend to pairwise fairness.
e False Omission Rate Parity (FORP) makes the independence
assumption of true match/non-match decision from subgroups,
conditional on the non-match decision (y L G| h = 0).

Vgi € G,Pr(y = ‘M’|gi, h(e,e’) = ‘N’) =~ Pr(y = ‘M’|h(e,e’) = ‘N’)

(12)

This measure is also only meaningful for single fairness and does
not extend to pairwise fairness.



A summary of entity matching fairness measures and their de-
finability for single and pairwise fairness definitions is shown in
Figure 4.

4.3 Entity Matching Fairness Disparity
(Unfairness)

Consider a fairness notion and a subgroup g; € G. In a perfect
situation, the matcher should satisfy the parity (equality) between
two probabilities in the following form:

Vgi € G, Pr(a| B, gi) = Pr(a| f) (13)

where « and f are specified by the fairness measure. For example,
for Positive Predictive Parity, « isy = ‘M’ and S is h(e,e’) = ‘M’.

On the other hand, due to the trade-offs [26] between different
fairness notions and the impossibilities theorems [10], it is often
not possible to satisfy complete parity on all fairness measures. As a
result, considering a threshold value (e.g. the 20% rule [18] suggests
the threshold as 0.2), the objective is to make sure that disparity (as
known as unfairness) is less than the threshold. Given a fairness
notion and a subgroup g; € G, the disparity can be computed using
subtraction [8], as following:

Fo(t,s;(g,-) = max (O, Pr(a| p) — Pr(a| ﬁ,gi)) (14)

For example, for accuracy parity (« is h(e, e’) = y and f is null) the
disparity can be computed as

FXI))(gi) = max (0, Pr(h(e,e’) =y) — Pr(h(e,e’) =y | gi))

Note that if the accuracy for the subgroup g; is higher than the
average accuracy of the model, it is not considered as unfairness.
Also, note that Equation 14 considers the higher the probability
the better. Depending on fairness measures (and application), the
direction may be as the lower the probability the better. For example,
for FNRP, lower probability of false negative is preferred. For such
cases, one should consider Pr(h(e,e’) =y | gi) — Pr(h(e,e’) = y)
when computing disparity. As a result, for false negative rate (« is
h(e,e’) = ‘N’ and B is y = ‘M’) the disparity can be computed as

FIE“;\)IRP(gi) = max (0 , Pr(h(e,e’) =0|y="M,g;) 5
15
—Pr(h(ee’) =0y = ‘M’))

Alternatively, given a fairness notion and a subgroup g; € G, the
disparity can be computed using division [18, 18] , as following:

Pr(a|p, gi))
Pr(a | p)
Similar to Equation 14, Equation 16 also considers the higher the
probabilities the better. For the cases (such as FNRP or FDRP) where
the lower probabilities are better, one should swap the nominator
and the denominator in the equation. Therefore, for false discovery
rate (o is y = 0 and f is h(x) = 1) the disparity can be computed as
Pr(y="‘N’| h(e,e’) = ‘M’))
Pr(y="N"| h(x) ="M, g:)
Our proposal in this paper is agnostic to the choice of operation

for computing the disparities. Still, in our experiments, without any
preference, we use subtraction for computing the disparities.

Fo(:iﬁ) (g7) = max (0 - (16)

Fl(:‘gRP(g,-) = max (0 ,1-

5 PRESENTATION LAYER
5.1 Statistical Evaluation

The presentation layer analyzes the results generated by the logic
layer from evaluating fairness measures on subgroups of interest.
More concretely, the input to the presentation layer is the disparity
values of each subgroup in case of single fairness or each subgroup
pair in case of pairwise fairness, for all applicable measures. De-
pending on user preferences and available data, the results are
analyzed in two settings.

Single-workload Analysis: In this setting, the disparity results
are available for one test data set. In a group analysis perspective,
the goal is to identify which subgroups are unfair with respect to
which measure. This can be done by comparing the disparity of each
subgroup for each measure with a corresponding user-provided
threshold. In a measure analysis perspective, the goal is to aggregate
subgroup disparities to make a final conclusion about the fairness
of a matcher based on a measure. Focusing on a measure, a user
may choose to aggregate disparity results of all subgroups using
functions such as MAX, MIN, AVG, and MAX minus MIN. Comparing the
aggregated value with a disparity threshold determines whether a
matcher is overall unfair with respect to a particular measure.

Multiple-workload Analysis: We consider the scenario where
multiple instances of test data (workloads) are available from a
matcher. For example, different test data may become available at
different times or different samples from the underlying test data
distribution may be available.

In this case, the logic layer evaluates workloads separately. For
k workloads, the input to the presentation layer is a population of
k disparity values for each subgroup and measure combination. A
population for subgroup s and measure m includes the disparity
of s in every workload with respect to m. To assess the fairness of
a matcher M on subgroup ¢ using measure m and k workloads,
we employ the standard hypothesis testing [37]. For a subgroup s
and measure m, the fairness hypothesis testing considers the null
hypothesis that the matcher is fair on s and the alternative hypoth-
esis that the matcher is unfair on s. For more than one workload,
FAIREM chooses the appropriate z-test statistics. Next, the test sta-
tistics and corresponding p-value are computed as the probability of
getting the observed test statistic or something more extreme when
the null hypothesis is true. Finally, given a significance level «, the
null hypothesis in favor of the alternative is rejected if @ < p-value,
or not if @ > p-value.

If a user chooses to perform multiple-workload analysis on a
single provided test data set, FAIREM generates k workloads by
random sampling with replacement from the data set. The goal
of this analysis would be to verify whether an unfair subgroup
happened by chance or is indeed repeatable.

5.2 Explainability

After a matcher is audited for fairness and groups subject to unfair-
ness are identified, FAIREM reassures to offer additional insights
explaining the unfairness towards a group. FAIREM approaches
the explainability of group unfairness in three ways, discussed in
the following sections. The explanations provided by FAIREM falls
under the category of Local Model-agnostic Methods [33], where
given an unfairness measure and a group towards which the model



has been unfair, the goal is to provide (local) explanations for the
queried (measure, group).

The presentation layer determines whether a matcher is unfair
overall or for a subgroup, with respect to a measure. To allow users
to explore potential explanations for unfairness, FAIREM provides
three perspectives.

5.2.1 Subgroup-based Explanation. A matcher may be unfair on a
subgroup s because it performs poorly on more granular subgroups
of s. Navigating the subgroup hierarchy of a matcher downward
from an unfair subgroup node and considering matcher’s perfor-
mance on descendant nodes allows us to identify the subgroups of
s that may be the source of unfairness. Given a k-level subgroup
s, FAIREM offers the ability to investigate the unfairness for sub-
groups located in m levels deeper than s in the subgroup hierarchy,
such that 1 < m < k — depth(g). Assuming sufficient data exists
for s and its granular subgroup in the data set, disparity analysis
of these subgroups over various measures allows the user to gain
more insights on the unfairness of s.

Example 5: Consider the subgroup hierarchy of Figure 2 for a
data set with two sensitive attributes genre and gender. Sup-
pose a matcher is unfair based on accuracy disparity towards
Female group, which is a level-1 subgroup. FAIREM evaluates all the
level-2 subgroups that have Female as their parent i.e. Female-Pop,
Female-Rock, etc. Assuming that the observations show that the
matcher is fair towards Female-Pop, Female-Rock and unfair to-
wards Female-Jazz, one can explain the reasons for unfairness to-
wards Female subgroup due to matcher’s bad performance towards
Female-Jazz subgroup. O

5.2.2 Distance-based Explanation. Subgroup-based explanations
allow us to pinpoint the fine-grained subgroups that might have
caused unfairness for a subgroup of interest. Distance-based expla-
nations provide an abstract view over theses subgroups. In distance-
based perspective, FAIREM explores how a matcher performs on en-
tity pairs belonging to subgroup s that also belong to various other
subgroups. Let us define distance for between entities e; and e; in tu-
ple (e;, ej, Gi, Gj, m,y). Suppose both entities belong to subgroup s,
ie.s C Gjands C G;. The distance of d(e;, ej) = |Gi\Gj|+|Gj\Gil.
We would like to know how the distance of group associations of
entities impact the fairness of a model. To explain the unfairness
for s, for single (pairwise) fairness FAIREM groups all tuples that
have s in at least one entity (in both entities) and evaluates fair-
ness measures for each distance group. The goal is to specify if
the performance of the matcher on different distances within a
group g, is similar to the performance of the matcher on different
distances over all groups. One motivation for using distance-based
explanations is that often a data set may not have sufficient tuples
from highly fine-grained subgroups and distance-based grouping
allows us to make statistically significant conclusions.

We note that the distance-based explanation does not extend for
TPRP and FNRP. The reason is that when e; and e; are match, i.e.,
correspond to the same real-world object, G; = G;. As a result, the
distance between groups for true positive and false negative cases
is always zero.

5.2.3 Measure-based Explanation. The measure-based explanation
describes the unfairness of a matcher in terms of other measures.
This is a common practice in analyzing model performance holisti-
cally. This explanation is useful in particular for explaining accuracy
disparity. Considering the confusion matrix (e.g. Figure 3-b), low
accuracy of the model for a specific group can be due to the bad
performance on one of the matrix cells such as true positive. In
such a situation, unfairness on the given cell (e.g. TPRP) explains
the unfairness with respect to AP. In § 7, for example, we show
how the Accuracy disparity of a matcher can be explained by its
high False Positive Rate disparity.

6 IMPLEMENTATION

In this section, we discuss the implementation details of FAIREM.
The class diagram for FAIREM is illustrated in Figure 5 demon-
strating the main modules developed in the implementation. We
generally assume that input data to the framework is a set of work-
loads each having entries of sensitive attributes of the two entities
passed to the matching model, the outcome of the model and the
ground-truth. For easier use, we have integrated a built-in con-
verter in FAIREM to convert the benchmark data sets Magellan and
WDC to the accepted format by DitTo and DEEPMATCHER. While
DEEPMATCHER, outputs such as prediction results are stored in
pandas.DataFrames, D1TTo generates JSON outputs that need to
be manually parsed. FAIREM presents built-in parse functionality
for D1TTO outputs so that no further preprocessing by the user is
required. Initially, each workload is examined to extract the set of
all possible groups for the sensitive attributes. Next, for each entity,
FAIREM creates a group encoding based on the discussion of § 3:

o Single attribute with binary values: A vector of size two is created,
with each element representing one of the demographic groups.
The corresponding value to the demographic group of the entity
is set to be 1 and the other value would be 0, e.g. for sensitive
attribute gender={male, female}, an entity belonging to male de-
mographic group is encoded as (1,0) while a female entity is
encoded as (0, 1).

o Single attribute with multiple (exclusive) values: Consider n as the
cardinality of sensitive attribute of interest. A vector of size n is
created and the corresponding value to the demographic group
of the entity is set to be 1 while all the other elements will be 0,
e.g. for sensitive attribute race={Black, White, Hispanic,
Asian, other}, an entity belonging to Black demographic
group is encoded as (1,0, 0, 0, 0).

o Single setwise attribute: Similar to the previous case, a vector of
size n is created, however this time, multiple elements in the vec-
tor can be equal to 1 since different demographic groups can hap-
pen at the same time, e.g. for sensitive attribute genre={Rock,
Pop, Jazz, Rap}, an entity belonging to Rock, Rap demo-
graphic group is encoded as (1, 0,0, 1).

o Multiple attribute:

Having encoded the sensitive attribute values for all entities in
the dataset, next, FAIREM moves to evaluation of the model with
respect to the subgroups of interest. Users may not have a specific
set of subgroups that they need to be concerned with, therefore,
FAIREM offers the capability to create all possible subgroups of
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Figure 5: Class diagram for FAIREM.

level-k in the subgroup hierarchy and investigate the performance
of the matcher on them.

With the subgroups of interest discovered and enumerated,
FAIREM then evaluates each with regards to fairness measures
of interest (discussed in section § 4.2) by calling is_fair() function.
The is_fair() function calculates the disparities between the sub-
group and its counterparts and if the values exceeds the user’s
fairness threshold constraints, subgroup will be reported as unfair.
Depending on the number of workloads and aggregation functions,
statistical analysis and hypothesis testing may have to be performed
on the disparity results. Finally, FAIREM visualizes the results in
tables and heat maps, demonstrating a side-by-side overview of
matcher’s performance for each subgroup with respect to different
fairness measures.

In addition, FAIREM provides distance-based explanations when
users are interested in investigating the reasoning behind unfair
behavior of a matcher on a specific subgroup on a specific mea-
sure. Since in some cases the number of distances could potentially
become large while each distance represents few subgroups and
tuples, we execute equi-width binning on the subgroups such that
k bins of approximately equal sizes are generated. Finally, for each
unfair subgroup, average disparity values for each distance bin is
computed and visualized in line charts, demonstrating matcher’s
behavior as similarities diminish.

7 EXPERIMENTS

We conduct comprehensive experiments on real-world data sets to
validate FAIREM and evaluate the fairness of two state-of-the-art
entity matchers.

7.1 Experimental Setup

The experiments were conducted using a 3.5 GHz Intel Core i9
processor, 128 GB memory, running Ubuntu. The framework was
implemented in Python.

7.1.1  Data Sets. For evaluation purposes, we used three real-world
benchmark data sets:

e Magellan iTunes-Amazon Data Set: This dataset contains
“structured” music data from iTunes and Amazon with a size of
539 instances, 132 of which being a true match [34]. We consider
genre as a single setwise attribute sensitive attribute.

e Magellan DBLP-ACM Data Set: This dataset contains “struc-
tured” publication data from DBLP and ACM with a size of 12,363

instances, 2,220 of which being a true match [34]. We consider
venue as the sensitive attribute with multiple values.

WDC Shoes Data Set: Sub-sampled from WDC product data
corpus and gold standard for large-scale product matching, this
“textual” data set contains 42,429 instances of e-commerce prod-
uct offering pairs from shoe domain, 4,141 of which being a true
match. Each entity is associate with a locale at the end of the
title that we extract and add as a separate column to use it as the
sensitive attribute [38].

7.1.2  Entity Matching Frameworks. We employ D1TTO and DEEP-
MaATCHER frameworks to execute the entity matching task and we
evaluate their performance on the aforementioned data sets.

7.2 Evaluation Plan

To evaluate the functionality of FAIREM, we perform two sets of
experiments:

e Measure vs. Subgroup: We investigate the performance of
matchers in terms of single and pairwise fairness over a single
or multiple workloads for all valid subgroups in the data sets.
Measure vs. Distance: Once unfair subgroups are identified,
we investigate the behavior of matchers as similarities between
subgroups diminish.

Next, we choose a number of the identified discriminated subgroups
from different settings and perform a case study on them to investi-
gate the reasoning of FAIREM for the unfair behavior of matchers.

7.2.1 Training Matchers. For DEEPMATCHER, we trained the model
in 15 epochs and validated the outcomes with similarity threshold
of 0.7. We choose fastText [9] pre-trained character-level embedding
trained on English corpora for DEEPMATCHER due to its superior
performance as reported in [34].

For DiTTO, We trained the model with batch size and max se-
quence length of 64 and the learning rate of 3x 10~ in 40 epochs us-
ing DistilBERT base (uncased) [45] language model only pre-trained
on English corpora. For optimization purposes, data was augmented
using the deletion operator which randomly erases a span of to-
kens except for special tokens e.g. [COL] or [VAL]. Next, sequences
were summarized by retaining only the high TF-IDF tokens. The
resulting sequence will be of length no more than the max sequence
length Finally, general domain knowledge was injected to the input
sequences by tagging informative spans by inserting special tokens
(e.g. PERSON) and normalizing certain spans such as numbers.

As for the fairness threshold, we follow EEOC’s 80% rule [12],
that is only 20% disparity is tolerated. We observe that distances



between entites for unfair groups in iTunes-Amazon were in the
range of [1,11], which we binned into 4 equi-width bins.

7.3 Case Studies

Here, we highlight interesting observations from auditing DEEP-
MaATtcHER and D1TToO. Figure 15 and 16 present a detailed view on the
disparity values of various measures for DEEPMATCHER and Di1TTO
on the iTunes — Amazon data set. More comprehensive results
can be found in our technical report (submitted as supplementary
material).

7.3.1 Case Study 1: iTunes — Amazon’s Accuracy Parity. In our first
case study, we evaluated DrtTo and DEEPMATCHER for fairness on
Magellan iTunes-Amazon dataset. In particular, we are interested to
see if the two matchers have accuracy parity unfairness on any of
the groups. As shown in Figures 6 and 7, both matchers were unfair
towards the R&B/Soul genre - reflecting potential bias towards
the artists and fans of this music genre. To further investigate the
reasons behind the unfairness, we used the explanation techniques
proposed in § 5.2. First, we considered other fairness measures
to explain accuracy disparity. Considering Figure 6, it turns out
DEEPMATCHER is fair for R&B/Soul on FPRP (and TNRP), while it
is unfair on TPRP (and FNRP). This means the accuracy disparity
for DEEPMATCHER is due to the disparity on TPRP. In other words,
DEEPMATCHER mistakenly detected many of the pairs of R&B/Soul
that are match as non-match, which resulted in a disparate accuracy
for that group. On the other hand, the other fairness measures
did not provide any explanation for the unfairness of DitTO for
R&B/Soul.

An additional explanation can be sought by looking at the Dis-
tance vs. Accuracy plot in Figures 13 and 14. These figures compare
the overall accuracy trend of matchers with respect to R&/Soul
accuracy trend as similarities between the groups diminish. On av-
erage, the matcher is performing well and although for R&B/Soul,
both DrrTo and DEEPMATCHER perform satisfactory for distance
bin 2, for the more similar subgroups (bin 1) and less similar ones
(bin 3), model significantly performs worse than the average ex-
plaining the existing unfairness with respect to AP.

7.3.2  Case Study 2: iTunes-Amazon — DITTO v.s. DEEPMATCHER. In
this section, we continue with evaluating D1TT0 and DEEPMATCHER
on different groups and different fairness measures, with the goal
of comparing the matchers and find behavioral details causing
unfairness. As observed in Figures 6 and 7, both models are unfair
with respect to FPRP towards R&/Soul, Contemporary Country
and Country genres. By looking more closely at data, ground truth
labels, and predicted labels, we observed that high FPRP is due to
the high semantic and syntactic similarity of titles of song entities.
A pair of songs mistakenly detected as a match by DitToO is the
following:

L-artist
K. Chesney

Left song
Tequila Loves Me

IRight song
Likes Me

R-artist y |h
K. Chesney [N’ [M’

First, both songs are by Kenny Chesney. But more importantly,
using a pretrained language model, Likes Me and Loves Me are
considered (almost) identical. As a result the model mistakenly
labeled the left and right songs as match. Interestingly, such cases

happen to be more frequent in genres such Country, resulting in
FPRP unfairness for those groups.

One unfairness case in DEEPMATCHER (but not in DITTO) is
TPRP (and FNRP) for groups such as Dance, Electronic, and
Rap. Comparing DEEPMATCHER and DITTO results on the entries
that DEEPMATCHER fails for, we interestingly identify match pairs
with identical titles that DEEPMATCHER mistakenly detected as non-
match. D1TTO could successfully label those pairs as match because
it assigns different importance to different features. As a result,
considering song title as a strong match indicator, it could detect
the match. DEEPMATCHER, on the other hand, merging the features
together, considers equal importance for different features, hence,
mislabeled the match pairs with identical titles due to small dif-
ferences in other attributes. The high frequency of these cases in
genres such as Dance causes the TPRP in DEEPMATCHER. Moreveor,
DrtTo serializes each entity as one input with structural tags intact
and then calculates the similarity between the two, while DEEP-
MATCHER calculates the similarities between the two entities based
on the corresponding features (title vs. title) and then aggregates all
the similarities in the next step which can lead to a more uniform
weight for all attributes rather than focusing on the important ones.

Finally, DrrTo was unfair for Pop on FPRP, while DEEPMATCHER
was fair. The reason for this was the popularity of different versions
of songs with very similar titles which are considered as not match.
The following is an example of such a pair:

Left song |L-artist |L-album | Right song |R-artist |R-album |y |h
The Blood [Taylor Karaoke |The Blood ([Taylor PBastille [N’ (M’
(Karaoke) |Swift (Original) |Swift

Putting a high weight on the song title, DiTTo mistakenly detected
the two songs as match, while DEEPMATCHER, putting equal weights
on different attributes, detected them as unmatch, considering the
album title differences.

7.3.3  Case Study 3: Shoes Data set Non-English Subgroups. We
evaluated D1tTo and DEEPMATCHER on WDC Shoes dataset, both
on single (Figures 8 and 9) and pairwise (Figures 10 and 11) fairness
notions. As reflected in Figures 8 and 9, in general, both models are
unfair towards entries that do not belong to non-English languages
locale, including fr, it, de, pl, es, and other minority languages
(grouped as others). The unfairness of both models on these groups
can be due to the lack of proper representation of these languages
on the training data, known as lack of data coverage [4, 5]. How-
ever, investigating the training data, we realized the training data
has proper coverage of these languages. On the other hand, these
models use pre-trained language models and word/character embed-
dings being mainly trained on general English corpora, and hence
fail when it comes to entries in other languages. In other words,
unfairness in these language models have been transformed into
the unfairness of the matchers.

7.3.4  Case Study 4: DBLP-ACM Multiple Workloads. We perform
multiple-workload analysis on the DBLP-ACM data set. This data
set is large enough to be able to generate reasonably sized work-
loads. We generated 40 workloads, each of size 30%, of the original
test data set (734 entity pairs). Our objective is to see if the match-
ers have any unfairness for the (DB) venues present in the dataset:
VDLB, SIGMOD, VLDBJ, SIGMOD Records, and ACM TODS. The results
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Figure 6: DEEPMATCHER results on iTunes-
Amazon data set: single fairness, 1 work-

load (white is fair, black is unfair).
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Figure 9: D1TTO results on WDC shoes shoes data set: pairwise fairness, 1 work- set: pairwise fairness, 1 workload.
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workloads.

are provided in Figure 12. Unlike previous cases, our experiments
confirm that both matchers were fair for all venues, on all fairness
measures. This confirms that the underlying data used for training
the matchers was not biased with regard to the different venues.
The training process also did not add “create” unfairness. As a result,
using unbiased data results in the creation of unbiased matchers
that are fair for all groups from all fairness perspectives.
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Figure 14: DitTO distance-based explana-
tion for R&B/Soul subgroup in iTunes-
Amazon data set.

8 RELATED WORK

Existing works on entity matching generally fall into one of the
following three categories: 1) declarative rule 2) machine learning
3) crowd-sourcing based approaches. Rule-based methods such as
[17, 48] specify rules for matching entities and have the advantage
of being easily interpretable, however, a huge presence of domain
experts is required in such contexts. Machine learning-based meth-

ods, mostly following the idea of [19], have adopted approaches
such as SVM [11, 27], active learning [22, 24, 32] and clustering
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Figure 15: Disparity values for iTunes-Amazon subgroups
with respect to different measures by DEEPMATCHER (values
larger than 0.2 are considered to be unfair)

[39] to learn matching functions. Furthermore, deep learning tech-
niques have recently shown promising results for entity matching
tasks. DeepER [15] uses uni- and bi-directional RNNs with LSTM
hidden units to convert each tuple to a distributed representation
which can in turn be utilized to capture similarities between tuples.
DEEPMATCHER [34] provides a categorization of deep learning so-
lutions for entity matching (as SIF, RNN, attention and hybrid) and
a categorization of entity matching problems (as structured, tex-
tual and dirty) in which deep learning can be effective. DrtTO [29]
treats the entity matching as a sequence-pair classification problem
and uses pre-trained transformer-based language models and also
further improves its performance by adopting optimization tech-
niques such and domain knowledge injection, text summarization
and data augmentation techniques. Finally, a line of work focuses
on crowd-sourcing and using human experts knowledge for entity
matching tasks [13, 21].

Auditing machine learning models for fairness has drawn a lot
of attention in the recent years among different communities and
many systems have been proposed for such applications. [41] is a
bias and fairness audit toolkit that enables users to test models for
several bias and fairness metrics in relation to multiple population
sub-groups. [25] focuses on providing a solution for auditing mod-
els for intersectional fairness and mitigating bias. [54] proposes an
explorative system for unfairness discovery, explanation and miti-
gation with the benefit of having human-in-the-loop. Additionally,
since fairness does not have a unique definition, depending on the
problem context, a great number of measures have been proposed
for quantifying fairness [51].

Fairness has recently been studied in different steps of data
pipeline, including data preparation [43, 44], data cleaning [46, 55],
data integration [35, 36, 52], data profiling [20, 49], data bias iden-
tification [4, 5, 31], data acquisition [50], feature engineering [40]
and query formulation [1, 2, 42, 47]. Fairness in entity resolution
has briefly been studied in the literature. [16] proposes a constraint-
based formulation approach to mitigate bias in entity resolution
tasks as failing to address bias in these tasks may lead to system-
atic bias that jeopardize both accuracy and fairness of downstream
data analysis. Fairness-aware entity resolution addresses discrep-
ancies in the size of the groups in input data, where the majority of
resolved entities belongs to a specific (advantaged) group.
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Figure 16: Disparity values for iTunes-Amazon subgroups
with respect to different measures by DrTrTO

To the best of our knowledge, we are the first to develop a system
for auditing entity matching models for fairness and propose proper
measures and comparison angles fitting the problem settings given
the inherent differences with typical machine learning tasks that
has so far been studied.

9 CONCLUSION

We proposed FAIREM, a three-layer framework for auditing entity
matching models for fairness. In data layer, we select and represent
groups using a standardized encoding for unifying different types of
sensitive attributes. Next, in the logic layer, we evaluate a workload
of data with respect to applicable group fairness definitions specific
to entity matching. Finally, in representation layer, we perform
statistical evaluations on the fairness results and provide explana-
tions for matcher’s unfair behavior towards particular subgroups.
We thoroughly assess two state-of-the-art matchers using FAIREM
with real world data sets and present and analyze the interesting
observations. For future work, we intend to improve FAIREM by
adding a GUI, to facilitate easier investigation of the matchers. Since
FAIREM is not limited to the choice of matchers or data sets, we
intend to integrate native support for more entity matchers and
data sets specifically dirty data sets with missing data which can
be quite challenging. Lastly, we would like to expand FAIREM from
solely auditing capabilities to a framework that offers unfairness
resolutions.
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APPENDIX

For the curious read, we include here the additional experiments
and plots on DEEPMATCHER and D1TTO.
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Figure 17: Aggregated unfairness results for 1-combination
and 2-combination subgroups with respect to different mea-
sures by DEEPMATCHER
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Figure 18: Aggregated unfairness results for 1-combination
and 2-combination subgroups with respect to different mea-
sures by DiTTO
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Figure 19: DEEPMATCHER results on iTunes-Amazon data set:
pairwise fairness, 1 workload. (Only 10 subgroups shown due
to space constraints)
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