
IID Sampling over Joins

Based on: Joins on Samples: A Theoretical Guide for Practitioners, PVLDB 2019
and

Random Sampling over Join Revisited, SIGMOD 2018.

Motivating Example

n Predicting the return flag of an item shipped to a customer
– Using features of both the item and another item shipped to the same customer

2

CustId Region Total Discount Flag2 Total2 Discount2

10 2 100 0.2 0 20 0.5
20 1 200 0.0 0 100 0.1
20 1 500 0.1 0 300 0.2

……

Flag

1
0
0

……

Label Features

Motivating Example

3

Joining 7 Tables from TPC-H

In order to predict the return_flag of an item ℓ1
shipped to a customer c, we may want to look at
another item ℓ2 shipped to the same customer c
and include the return_flag of ℓ2 as a feature

Motivating Example

n Training a classifier using SVM on a join over 7 tables
– Full join takes more than 12 hours to compute.
– Training runs forever without down-sampling.

4

⋈
A B

1 2

2 2

3 4

4 4

B C

1 2

2 2

3 4

4 4

C D

1 2

2 2

3 4

4 4

D E

1 2

2 2

3 4

4 4

E F

1 2

2 2

3 4

4 4

F G

1 2

2 2

3 4

4 4

G H

1 2

2 2

3 4

4 4

A B C D E F G H

1 2 2 1 2 1 1 2

2 1 2 2 3 3 2 2

3 4 5 3 2 3 3 4

……

Training

Evaluation

Accuracy = 80%

I.I.D Sampling over Join

n In many applications a random sample of the join results often suffices
– Estimating aggregates like COUNT, SUM, AVG, medians and quantiles, statistical

inference, clustering, regression, classification, etc.
– Training the model with a random sample on a join can bring great savings for both join

computation and model training, while incurring a small and bounded loss in accuracy.

n Given two T1 and T2, a sampling algorithm A is iid, if tuples returned by A all have
the same sampling probability and the appearance of two tuples in the join result
are independent events.

5

Example: 2-table Join Sampling

6

A B

1 1

2 1

3 1

4 2

5 2

6 2

7 3

B C

2 1

2 2

3 3

3 4

3 5

3 6

=𝑹𝟏 𝑨,𝑩 𝑹𝟐 𝑩, 𝑪

A B C

4 2 1

4 2 2

5 2 1

5 2 2

6 2 1

6 2 2

7 3 3

7 3 4

7 3 5

7 3 6

⋈ 𝑹 𝑨,𝑩, 𝑪

Goal: sample 𝑡 ∈ 𝑅 with probability !!"

Join Size

7

A B
a 1
b 2

T1 C D
a 3
a 4
b 5
b 6

T2

A B C D
a 1 a 3
a 1 a 4
b 2 b 5
b 2 b 6

T1 ⨝ T2

A B C D
a 1 a 3
b 2 b 5

S(T1 ⨝ T2)A B
a 1

S1 C D
a 3
b 5

S2

A B C D
a 1 a 3

S1 ⨝ S2

50% Uniform
Sample

50% Uniform
Sample

⨝
A=C

50% Uniform
Sample

Figure 1: A toy example of joining two uniform samples (left)
versus a uniform sample of the join (right).

yield an independent sample of their join1 (see Section 2.1 for de-
tails). The dependence of the output tuples can drastically lower
the approximation accuracy [5, 17].

Prior Work— Universe sampling [31, 37, 50] addresses the first
drawback of uniform sampling. Although universe sampling avoids
quadratic reduction of output, its creates even more correlation in
its output, leading to much lower accuracy (see Section 3.1).

Atserias et al. provide a worst case lower bound for any query
involving equi-joins on multiple relations, showing that computing
exact joins with a small memory or time budget is hard [12]. For in-
stance, the maximum possible join size for any cyclic join on three
n-tuple relations is ⇥(n1.5). Thus, a natural question is whether
approximating joins is also hard with small memory or time.

Our Goal— This paper focuses on understanding the limitation
of using offline samples in approximating join queries. Given a
sampling budget, how well can we approximate the join of two ta-
bles using their offline samples? To answer this question, we must
first define what constitutes a “good” approximation of a join. We
consider two metrics: (1) output cardinality and (2) aggregation ac-
curacy. The former is the number of tuples of the original join that
also appear in the join of the samples, whereas the latter is the error
of the aggregates estimated from the sample-based join with re-
spect to their true values, if computed on the original join. Because
in this paper we only consider unbiased estimators, we measure
approximation error in terms of the variance of our estimators.

For the first metric, we provide a simple proof showing that uni-
verse sampling is optimal, i.e. no sampling scheme with the same
sampling rate can outperform universe sampling in terms of the
(expected) output cardinality. However, as we show in Section 3.1,
retaining a large number of join tuples does not imply accurate ag-
gregates. It is therefore natural to also ask about the lowest vari-
ance that can be achieved given a sampling rate. To the best of
our knowledge, this has remained an open problem to date. For the
first time, we formally study this problem and offer an information-
theoretical lower bound to this question. We also present a hybrid
sampling scheme that matches this lower bound within a constant
factor. This scheme involves a centralized computation, which can
become prohibitive for large tables due to large amounts of statis-
tics that need to be shuffled across the network. Thus, we also pro-
1Prior work has stated that joining uniform samples is not a uniform

sample of the join [6]. We avoid this terminology since uniform
means equal probability of inclusion, and in this case each tuple
does appear in the join of the uniform samples with equal prob-
ability, but not independently. In other words, joining two i.i.d.
samples is an identical, but not independent, sample of the join.

pose a decentralized variant that only shuffles a minimal amount of
information across the nodes—such as the table size and maximum
frequency—but still achieves the same worst case guarantees. Fi-
nally, we generalize our sampling scheme to accommodate a priori

information about filters (i.e., WHERE clause).
In this paper, we make the following contributions:

1. We discuss two metrics—output size and estimator’s variance
—for measuring the quality of join approximation, and show
that universe sampling is optimal for output size and there is an
information-theoretical lower bound for variance (Section 3).

2. We formalize a hybrid scheme, called Stratified-Universe-Bernoulli
Sampling (SUBS), which allows for different combinations of
stratified, universe, and Bernoulli sampling. We derive opti-
mal sampling parameters within this scheme, and show that they
achieve the theoretical lower bound of variance within a con-
stant factor (Section 4–5.3). We also extend our analysis to ac-
commodate additional information regarding the WHERE clause
(Section 6).

3. Through extensive experiments, we also empirically show that
our optimal sampling parameters achieve lower error than ex-
isting sampling schemes in both centralized and decentralized
scenarios (Section 7).

2. BACKGROUND
In this section, we provide the necessary background on sampling-

based join approximation. We also formally state our problem set-
ting and assumptions.

2.1 Sampling in Databases
The following are the three main popular sampling strategies

(operators) used in AQP engines and database systems.

1. Uniform/Bernoulli Sampling. Any strategy that samples all tu-
ples with the same probability is considered a uniform (random)
sample. Since enforcing fixed-size sampling without replace-
ment is expensive in distributed systems, Bernoulli sampling is
considered a more efficient strategy [37]. In Bernoulli sampling,
each tuple is included in the sample independently, with a fixed
sampling probability p. In this paper, for simplicity, we use “uni-
form” and “Bernoulli” interchangeably. As mentioned in Sec-
tion 1, joining two uniform samples leads to quadratically fewer
output tuples. Further, it does not guarantee an i.i.d. sample of
the original join [6]: the output is a uniform sample of the join
but not an independent one. Consider an arbitrary tuple of the
join, say (t1, t2), where t1 is from the first table and t2 is from
the second. The probability of this tuple appearing in the join
of the samples is always the same value, i.e., p2. The output
is thus a uniform sample. However, the tuples are not indepen-
dent: consider another tuple of the join, say (t1, t

0
2) where t

0
2 is

another tuple from the second table joining with t1. If (t1, t2)
appears in the output, the probability of (t1, t02) also appearing
becomes p instead of p2, which would be the probability if they
were independent.

2. Universe Sampling. Given a column2
J , a (perfect) hash func-

tion h : J 7! [0, 1], and a sampling rate p, this strategy includes
a tuple t in the table if h(t.J)  p. Universe sampling is often
used for equi-joins, in which the same p value and hash function
h are applied to the join columns in both tables. This ensures
that when a tuple t1 is sampled from one table, any matching

2
J can also be a set of multiple columns.

548

Bernoulli/Random Sampling

n Offline setting
n Random sampling: for sample size k, each element in the underlying population is

picked with equal probability; repeat k times independently. w/ or w/o replacement
– Expensive for taking a large sample w/ replacement

n Join samples taken from tables based on Bernoulli sampling
n Bernoulli sampling: each tuple is included in the sample independently, with a fixed

sampling probability p.
– What join size do we expect?
– Is the result a random/uniform sample?
– Is the result an independent sample?

8

Bernoulli/Random Sampling

n Bernoulli sampling: each tuple is included in the sample independently, with a fixed
sampling probability p.
– p2 of joined tuples. Quadratically fewer output tuples.
– Uniform: Consider an arbitrary tuple of the join (t1,t2), where t1 is from the first table

and t2 is from the second. The probability of this tuple appearing in the join of the
samples is p2.

– Not independent: consider (t1 , tʹ2) where tʹ2 joins with t1. If (t1 , t2) in the output, the
probability of (t1 , tʹ2) also appearing becomes p instead of p2.

9

Universe Sampling

n Offline setting
n Given a column J, a (perfect) hash function h : J → [0, 1], and a sampling rate p, this

strategy includes a tuple t in the sample if h(t.J) ≤ p.
– Often used for equi-joins (the same p value and hash function h are applied to the join

columns in both tables). Why?
n What join size do we expect?
n Is the result a random/uniform sample?
n Is the result an independent sample?

10

Universe Sampling

n Given a column J, a (perfect) hash function h : J → [0, 1], and a sampling rate p, this
strategy includes a tuple t in the table if h(t.J) ≤ p.
– Often used for equi-joins (the same p value and hash function h are applied to the join

columns in both tables). Why?
n The join result size of two universe samples of rate p produces p fraction of the

original join output in expectation.
n Uniform: each join tuple appears with the same probability p.
n Not Independent: Consider two join tuples (t1, t2) and (tʹ1, tʹ2) where t1, tʹ1, t2, tʹ2 all

share the same join key. Then, if (t1 , t2) appears, the probability of (tʹ1 , tʹ2) also
appearing will be 1. Likewise, if (t1, t2) does not appear, the probability of (tʹ1 , tʹ2)
appearing will be 0.

11

Stratified Sampling

n Offline setting
n The goal of stratified sampling is to ensure that minority groups are sufficiently

represented in the sample.
n Groups are defined according to one or multiple columns, called the stratified

columns. A group (a.k.a. a stratum) is a set of tuples that share the same value
under those stratified columns.

n Given a set of stratified columns C and an integer parameter k, a stratified sampling
guarantees at least k tuples are sampled uniformly at random from each group.
When a group has fewer than k tuples, all of them are retained.

12

Sampling Summary

n The sampling operation cannot be pushed down through a join operator
sample(R) ⨝ sample(S) ≠ sample(R ⨝ S).

n Why iid sampling?

13

Join Sampling Requirements

n Online setting
n The problem of join sampling is to return each tuple from J = R1⨝ ··· ⨝ Rn with

probability 1/|J|. When one sample is not enough, continuously sample until a
desired sample size k is reached. Join sampling requires that these samples are
totally independent.

14

Olken’s Algorithm for 2-table Joins
A B

1 1

2 1

3 1

4 2

5 2

6 2

7 3

15

B C

2 1

2 2

3 3

3 4

3 5

3 6

⋈𝑹𝟏 𝑨,𝑩 𝑹𝟐 𝑩, 𝑪

• Degree of value 𝑏 in 𝑅-: 𝑑0 𝑏, 𝑅-
• Maximum degree of 𝐵 in 𝑅-: 𝑀0 𝑅-

1. Uniformly sample 𝑡! ∈ 𝑅!
2. Uniformly sample 𝑡# ∈ 𝑡! ⋊ 𝑅# = 𝑡# ∈ 𝑅#|𝜋$𝑅# = 𝜋$ 𝑡!
3. With probability, accept the sample.

Reject otherwise. Show this algorithm guarantees iid.

𝑡! ∈ 𝑅!

6 2𝒕𝟏

Pr(𝑡!) =

2 2 𝒕𝟐
𝑡# ∈ 𝑡! ⋊ 𝑅#

Pr(𝑡#)×

𝛼 =?

× 𝛼Pr 𝑡6, 𝑡7 ∧ 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 =

⇒ Pr 𝑡6, 𝑡7|𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 =
Pr 𝑡6, 𝑡7 ∧ 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

Pr 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

Olken’s Algorithm for 2-table Joins
A B

1 1

2 1

3 1

4 2

5 2

6 2

7 3

16

B C

2 1

2 2

3 3

3 4

3 5

3 6

⋈𝑹𝟏 𝑨,𝑩 𝑹𝟐 𝑩, 𝑪

• Degree of value 𝑏 in 𝑅-: 𝑑0 𝑏, 𝑅-
• Maximum degree of 𝐵 in 𝑅-: 𝑀0 𝑅-

1. Uniformly sample 𝑡! ∈ 𝑅!
2. Uniformly sample 𝑡# ∈ 𝑡! ⋊ 𝑅# = 𝑡# ∈ 𝑅#|𝜋$𝑅# = 𝜋$ 𝑡!
3. With probability 𝛼 = '? (?)@ ,+A

,? +A
, accept the sample.

Reject otherwise. Show this algorithm guarantees iid.

𝑡! ∈ 𝑅!

6 2𝒕𝟏

Pr(𝑡!) = 1
7

2 2 𝒕𝟐
𝑡# ∈ 𝑡! ⋊ 𝑅#

Pr(𝑡#)× ×
1
2

𝛼 = '? (?)@ ,+A
,? +A

,

× 𝛼 ×
2
4

= 1
28

Pr 𝑡6, 𝑡7 ∧ 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 =

⇒ Pr 𝑡6, 𝑡7|𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 =
Pr 𝑡6, 𝑡7 ∧ 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

Pr 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
=
1/28
10/28

=
1
10

High rejection rate if 𝑀0 𝑅- is much larger than typical 𝑑0 𝑏, 𝑅-

Chaudhuri et al.’s Algorithm for 2-table Joins
A B

1 1

2 1

3 1

4 2

5 2

6 2

7 3

17

B C

2 1

2 2

3 3

3 4

3 5

3 6

⋈𝑹𝟏 𝑨,𝑩 𝑹𝟐 𝑩, 𝑪

• Degree of value 𝑏 in 𝑅-: 𝑑0 𝑏, 𝑅-

1. Sample 𝑡! ∈ 𝑅! with probability ∝ 𝑑$ 𝑏, 𝑅-
2. Uniformly sample 𝑡# ∈ 𝑡! ⋊ 𝑅# = 𝑡# ∈ 𝑅#|𝜋$𝑅# = 𝜋$ 𝑡!
3. Always accept the sample

𝑡! ∈ 𝑅!

6 2𝒕𝟏

Pr(𝑡!) = 2
10

2 2 𝒕𝟐 𝑡# ∈ 𝑡! ⋊ 𝑅#

Pr(𝑡#)× ×
1
2

=
1
10

Acceptance rate = 1

Both Olken’s algorithm and Chaudhuri et al.’s algorithm can
be implemented if indexes are available on the join attribute
B. If not, a full scan on both relations is needed.

Acharya et al.’s Algorithm for Multi-way Foreign-key Joins

18

n Acyclic joins
n Joins are on foreign keys and primary keys

=> 1-to-1 mapping between 𝑅! ⋈ 𝑅# ⋈ 𝑅. and 𝑅!

A B

1 1

2 1

3 1

4 2

5 3

6 4

7 5

B C

1 3

2 3

3 1

4 2

5 2

C D

1 2

2 4

3 6

⋈𝑹𝟏 𝑨,𝑩 𝑹𝟐 𝑩, 𝑪 ⋈ 𝑹𝟐 𝑪,𝑫

1. Uniformly sample 𝑡! ∈ 𝑅!
2. Use the foreign key to look up matching

tuples in 𝑅#, … , 𝑅/

6 4𝒕𝟏 𝑡! ∈ 𝑅!

4 2

2 4

𝒕𝟐

𝒕𝟑

A General Sampling Framework for Multi-way Joins

20

Consider a chain join 𝑅! ⋈ 𝑅# ⋈ ⋯ ⋈ 𝑅/ • Model a join as a DAG
• Vertices: tuples
• Edges: if two tuples join

• Weight of a tuple 𝑤 𝑡 : # join results
starting from it
• Sample proportional to weight

1|1𝑅6

𝑅7

……

𝑅J

1|1 1|2

1|3 2|4 2|5 2|6

5 5 3

1 1 15

𝑃𝑟 =
3
13

𝑃𝑟 =
1
3

A, BA, BA, B

B, C B, C B, C B, C

𝑃𝑟 =
1
3

3

A General Sampling Framework for Multi-way Joins

21

Consider a chain join 𝑅! ⋈ 𝑅# ⋈ ⋯ ⋈ 𝑅/ • We model join results as a DAG
• Vertices: tuples
• Edges: if two tuples join

• Weight of a tuple 𝑤 𝑡 : # join results
starting from it
• Sample proportional to weight

• Use a surrogate of weight 𝑊 𝑡 if 𝑤 𝑡 is
not available. 𝑊 𝑡 : upper bound of 𝑤 𝑡

• Reject with prob.
L M N∑12∈45 1 L M2

L M
.

1|1𝑅6

𝑅7

……

𝑅J

1|1 1|2

1|3 2|4 2|5 2|6

5 5 5

1 1 15
Reject with 𝑃𝑟 = #

6

𝑃𝑟 =
1
3

A, BA, BA, B

B, C B, C B, C B, C

Instantiation of the Join Sampling Framework
n Different instantiation of 𝑊(𝑡) => different sampling algorithms

– How to efficiently compute a tight upper bound 𝑊(𝑡) for any tuple 𝑡 in an online fashion?

22

1|1𝑅6

𝑅7 ……

𝑅S

2|1 7|2

1|1 2|1

1|2 2|4 2|8 3|6

𝑡"𝑅T

1|2

……
𝑊 7 2 = ?A, B A, B A, B

B, C B, C B, C

C, D C, D C, D C, D

General Join Cases

23

𝑹𝟏

𝑹𝟐 𝑹𝟑

𝑹𝟒

𝑨𝟏 𝑨𝟐

𝑨𝟑

Acyclic Join

𝑹𝟏

𝑹𝟐 𝑹𝟑

𝑹𝟒

𝑨𝟏 𝑨𝟐

𝑨𝟑
𝑨𝟒

Cyclic Join

𝑹𝟏

𝑹𝟐 𝝈𝑨𝟓∈𝑺𝑹𝟑

𝑹𝟒

𝑨𝟏 𝑨𝟐

𝑨𝟑
𝑨𝟒

Join
w/ Selection Predicate

𝑹𝟏

𝑹𝟑

𝑹𝟒

𝑨𝟐

𝑨𝟑

Chain Join

Project I

n Given sources L = {D1,..., Dn} with their costs {C1,..., Cn}, and count requirements {Q1, . . . , Q𝑚} on
groups {G1, . . . , G𝑚}, our goal is to query different sources in L, in a sequential manner, in order to
collect samples that fulfill the count requirement, while the expected total query cost is minimized.

n Generalize the problem to
– fixed > 1 number of samples at each iteration
– arbitrary number of samples at each iteration
– count requirements on multiple groups (e.g. 100 of gender=F and 100 of gender=M as well as

100 of race=W and 100 of race=NW)
– overlapping sources

n Prove of cost optimality when possible.
n Evaluate the designed algorithms in terms of cost/number of samples.
n Compare to a baseline/ existing work.

24

Project II

n We are given multiple (chain) join paths J1, …, Jm with more than two tables, where each Ji = T1⨝ …
⨝ Tk. Note different join paths contain various number of tables. All join paths incur the same result
schemas. Design an efficient algorithm for iid sampling from the union (set and multiset semantics)
of J1, …, Jm. Suppose the following statistics are available/easy to compute.
– Table sizes
– The size of overlap of columns in table pairs
– The join size of tables

n Prove the algorithm returns iid results.
n Empirically evaluate your algorithm in terms of efficiency and accuracy.
n Compare to a baseline/ existing work.
n https://github.com/InitialDLab/SampleJoin

25

Project III

n Literature review of threshold-based nearest neighbor search using containment
n Empirical evaluation of LSH Ensemble for containment search
n https://github.com/ekzhu/lshensemble
n Design complementary experiments to the paper to gain more insights.

26

