IID Sampling over Joins

Based on: Joins on Samples: A Theoretical Guide for Practitioners, PVLDB 2019 and

Random Sampling over Join Revisited, SIGMOD 2018.

Motivating Example

- Predicting the return flag of an item shipped to a customer
 - Using features of both the item and another item shipped to the same customer

Label Features

FI	ag
	1
	0
	0

Custld	Region	Total	Discount	Flag2	Total2	Discount2	
10	2	100	0.2	0	20	0.5	
20	1	200	0.0	0	100	0.1	
20	1	500	0.1	0	300	0.2	

Motivating Example

Joining 7 Tables from TPC-H

```
SELECT
    11.1_returnflag, n_regionkey, s_acctbal,
    11.1_quantity, 11.1_extendedprice, 11.1_discount,
    11.1_shipdate, o1.o_totalprice, o1.o_orderpriority,
    12.1_quantity, 12.1_extendedprice, 12.1_discount,
    12.1_returnflag, 12.1_shipdate
FROM nation, supplier, lineitem 11, orders o1,
     customer, orders o2, lineitem 12
WHERE
       s_nationkey = n_nationkey
    AND s_suppkey = 11.1_suppkey
    AND 11.1_orderkey = o1.o_orderkey
    AND o1.o_custkey = c_custkey
    AND c_custkey = o2.o_custkey
    AND o2.o_orderkey = 12.1_orderkey;
```

In order to predict the return_flag of an item \$\ell1\$ shipped to a customer c, we may want to look at another item \$\ell2\$ shipped to the same customer c and include the return_flag of \$\ell2\$ as a feature

Motivating Example

- Training a classifier using SVM on a join over 7 tables
 - Full join takes more than 12 hours to compute.
 - Training runs forever without down-sampling.

I.I.D Sampling over Join

- In many applications a random sample of the join results often suffices
 - Estimating aggregates like COUNT, SUM, AVG, medians and quantiles, statistical inference, clustering, regression, classification, etc.
 - Training the model with a random sample on a join can bring great savings for both join computation and model training, while incurring a small and bounded loss in accuracy.
- Given two T_1 and T_2 , a sampling algorithm A is iid, if tuples returned by A all have the same sampling probability and the appearance of two tuples in the join result are independent events.

Example: 2-table Join Sampling

A	В	C	
4	2	1	
4	2	2	
5	2	1	
5	2	2	
6	2	1	
6	2	2	
7	ന	3	
7	თ	4	
7	3	5	
7	3	6	

$$R_1(A,B) \bowtie R_2(B,C) = R(A,B,C)$$

Goal: sample $t \in R$ with probability $\frac{1}{10}$

Join Size

Bernoulli/Random Sampling

- Offline setting
- Random sampling: for sample size k, each element in the underlying population is picked with equal probability; repeat k times independently. w/ or w/o replacement
 - Expensive for taking a large sample w/ replacement
- Join samples taken from tables based on Bernoulli sampling
- Bernoulli sampling: each tuple is included in the sample independently, with a fixed sampling probability p.
 - What join size do we expect?
 - Is the result a random/uniform sample?
 - Is the result an independent sample?

Bernoulli/Random Sampling

- Bernoulli sampling: each tuple is included in the sample independently, with a fixed sampling probability p.
 - p² of joined tuples. Quadratically fewer output tuples.
 - Uniform: Consider an arbitrary tuple of the join (t_1,t_2) , where t_1 is from the first table and t_2 is from the second. The probability of this tuple appearing in the join of the samples is p^2 .
 - Not independent: consider (t_1, t_2') where t_2' joins with t_1 . If (t_1, t_2) in the output, the probability of (t_1, t_2') also appearing becomes p instead of p^2 .

Universe Sampling

- Offline setting
- Given a column J, a (perfect) hash function h : J \rightarrow [0, 1], and a sampling rate p, this strategy includes a tuple t in the sample if h(t.J) \leq p.
 - Often used for equi-joins (the same p value and hash function h are applied to the join columns in both tables). Why?
- What join size do we expect?
- Is the result a random/uniform sample?
- Is the result an independent sample?

Universe Sampling

- Given a column J, a (perfect) hash function h : J \rightarrow [0, 1], and a sampling rate p, this strategy includes a tuple t in the table if h(t.J) \leq p.
 - Often used for equi-joins (the same p value and hash function h are applied to the join columns in both tables). Why?
- The join result size of two universe samples of rate p produces p fraction of the original join output in expectation.
- Uniform: each join tuple appears with the same probability p.
- Not Independent: Consider two join tuples (t_1, t_2) and (t'_1, t'_2) where t_1, t'_1, t_2, t'_2 all share the same join key. Then, if (t_1, t_2) appears, the probability of (t'_1, t'_2) also appearing will be 1. Likewise, if (t_1, t_2) does not appear, the probability of (t'_1, t'_2) appearing will be 0.

Stratified Sampling

- Offline setting
- The goal of stratified sampling is to ensure that minority groups are sufficiently represented in the sample.
- Groups are defined according to one or multiple columns, called the stratified columns. A group (a.k.a. a stratum) is a set of tuples that share the same value under those stratified columns.
- Given a set of stratified columns C and an integer parameter k, a stratified sampling guarantees at least k tuples are sampled uniformly at random from each group.
 When a group has fewer than k tuples, all of them are retained.

Sampling Summary

- The sampling operation cannot be pushed down through a join operator sample(R) \bowtie sample(S) \neq sample(R \bowtie S).
- Why iid sampling?

Join Sampling Requirements

- Online setting
- The problem of join sampling is to return each tuple from $J = R_1 \bowtie \cdots \bowtie R_n$ with probability 1/|J|. When one sample is not enough, continuously sample until a desired sample size k is reached. Join sampling requires that these samples are totally independent.

Olken's Algorithm for 2-table Joins

- Degree of value b in R_i : $d_B(b, R_i)$
- Maximum degree of B in R_i : $M_B(R_i)$
- 1. Uniformly sample $t_1 \in R_1$
- 2. Uniformly sample $t_2 \in t_1 \rtimes R_2 = \{t_2 \in R_2 | \pi_B R_2 = \pi_B(t_1) \}$
- 3. With probability, $\alpha = ?$ accept the sample. Reject otherwise. Show this algorithm guarantees iid.

$$R_1(A, B) \bowtie R_2(B, C)$$
 $\Pr(t_1, t_2 \land accepted) = \Pr(t_1) \times \Pr(t_2) \times \alpha =$

$$\Rightarrow \Pr(t_1, t_2 | accepted) = \frac{\Pr(t_1, t_2 \land accepted)}{\Pr(accepted)}$$

Olken's Algorithm for 2-table Joins

- Degree of value b in R_i : $d_R(b, R_i)$
- Maximum degree of B in R_i : $M_B(R_i)$
- t_2 1. Uniformly sample $t_1 \in R_1$
 - 2. Uniformly sample $t_2 \in t_1 \times R_2 = \{t_2 \in R_2 | \pi_B R_2 = \pi_B(t_1) \}$
 - 3. With probability $\alpha = \frac{d_B(\pi_B(t_1), R_2)}{M_B(R_2)}$, accept the sample. Reject otherwise. Show this algorithm guarantees iid.

High rejection rate if $M_B(R_i)$ is much larger than typical $d_B(b,R_i)$

$$R_{1}(A,B) \bowtie R_{2}(B,C)$$

$$Pr(t_{1},t_{2} \land accepted) = Pr(t_{1}) \times Pr(t_{2}) \times \alpha = \frac{1}{7} \times \frac{1}{2} \times \frac{2}{4} = \frac{1}{28}$$

$$\Rightarrow Pr(t_{1},t_{2}|accepted) = \frac{Pr(t_{1},t_{2} \land accepted)}{Pr(accepted)} = \frac{1/28}{10/28} = \frac{1}{10}$$

Chaudhuri et al.'s Algorithm for 2-table Joins

$$Pr(t_1) \times Pr(t_2)$$

• Degree of value b in R_i : $d_R(b, R_i)$

- 1. Sample $t_1 \in R_1$ with probability $\propto d_R(b, R_i)$
- **t**₂ 2. Uniformly sample $t_2 \in t_1 \rtimes R_2 = \{t_2 \in R_2 | \pi_R R_2 = \pi_R(t_1) \}$
 - 3. Always accept the sample

Acceptance rate = 1

Both Olken's algorithm and Chaudhuri et al.'s algorithm can be implemented if indexes are available on the join attribute B. If not, a full scan on both relations is needed.

$$R_1(A,B) \bowtie R_2(B,C)$$

 $Pr(t_1) \times Pr(t_2) = \frac{2}{10} \times \frac{1}{2} = \frac{1}{10}$

Acharya et al.'s Algorithm for Multi-way Foreign-key Joins

- Acyclic joins
- Joins are on foreign keys and primary keys
- => 1-to-1 mapping between $R_1 \bowtie R_2 \bowtie R_3$ and R_1

- 1. Uniformly sample $t_1 \in R_1$
- 2. Use the foreign key to look up matching tuples in $R_2, ..., R_n$

A General Sampling Framework for Multi-way Joins

Model a join as a DAG

- Vertices: tuples
- Edges: if two tuples join
- Weight of a tuple w(t): # join results starting from it
 - Sample proportional to weight

A General Sampling Framework for Multi-way Joins

2|6

$$Pr = \frac{1}{2}$$

2|5

We model join results as a DAG

Vertices: tuples

• Edges: if two tuples join

• Weight of a tuple w(t): # join results starting from it

Sample proportional to weight

• Use a surrogate of weight W(t) if w(t) is not available. W(t): upper bound of w(t)

• Reject with prob. $\frac{W(t) - \sum_{t' \in ch(t)} W(t')}{W(t)}$

Instantiation of the Join Sampling Framework

- Different instantiation of W(t) => different sampling algorithms
 - How to efficiently compute a tight upper bound W(t) for any tuple t in an online fashion?

General Join Cases

Project I

- Given sources $L = \{D_1, ..., D_n\}$ with their costs $\{C_1, ..., C_n\}$, and count requirements $\{Q_1, ..., Q_m\}$ on groups $\{G_1, ..., G_m\}$, our goal is to query different sources in L, in a sequential manner, in order to collect samples that fulfill the count requirement, while the expected total query cost is minimized.
- Generalize the problem to
 - fixed > 1 number of samples at each iteration
 - arbitrary number of samples at each iteration
 - count requirements on multiple groups (e.g. 100 of gender=F and 100 of gender=M as well as 100 of race=W and 100 of race=NW)
 - overlapping sources
- Prove of cost optimality when possible.
- Evaluate the designed algorithms in terms of cost/number of samples.
- Compare to a baseline/ existing work.

Project II

- We are given multiple (chain) join paths J_1 , ..., J_m with more than two tables, where each $J_i = T_1 \bowtie ...$ $\bowtie T_k$. Note different join paths contain various number of tables. All join paths incur the same result schemas. Design an *efficient* algorithm for iid sampling from the union (set and multiset semantics) of J_1 , ..., J_m . Suppose the following statistics are available/easy to compute.
 - Table sizes
 - The size of overlap of columns in table pairs
 - The join size of tables
- Prove the algorithm returns iid results.
- Empirically evaluate your algorithm in terms of efficiency and accuracy.
- Compare to a baseline/ existing work.
- https://github.com/InitialDLab/SampleJoin

Project III

- Literature review of threshold-based nearest neighbor search using containment
- Empirical evaluation of LSH Ensemble for containment search
- https://github.com/ekzhu/lshensemble
- Design complementary experiments to the paper to gain more insights.