
Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

¡ We learned about high dimensional data and
locality sensitive hashing

¡ In this module, we learn about infinite data
(streams), filtering data streams, and queries
on data streams

2

¡ In many situations, we do not know the
entire data set in advance

¡ Stream Management is important when the
input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and
non-stationary (the distribution changes
over time)

3

4

¡ Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream

¡ Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

6

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each stream is
composed of

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

¡ Types of queries one wants to answer on
a data stream:
§ Filtering a data stream

§ Select elements with property x from the stream

§ Counting distinct elements
§ Number of distinct elements in the last k elements

of the stream

§ Estimating moments
§ Estimate avg./std. dev. of last k elements

§ Finding frequent elements

7

¡ Mining query streams
§ Google wants to know what queries are

more frequent today than yesterday

¡ Mining click streams
§ Yahoo wants to know which of its pages are

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ Look for trending topics on Twitter, Facebook

8

¡ Sensor Networks
§ Many sensors feeding into a central controller

¡ Telephone call records
§ Data feeds into customer bills as well as

settlements between telephone companies
¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks

9

As the stream grows the sample
also gets bigger

¡ Since we can not store the entire stream,
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size

over a potentially infinite stream
§ At any “time” k we would like a random sample

of s elements
§ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has
equal prob. of being sampled

11

¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user

run the same query in a single day?
§ Have space to store 1/10th of query stream

¡ Naïve solution?

12

¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user

run the same query in a single day?
§ Have space to store 1/10th of query stream

¡ Naïve solution:
§ Generate a random integer in [0..9] for each query
§ Store the query if the integer is 0, otherwise

discard

13

¡ Simple question: What fraction of queries by
an average search engine user are duplicates?
§ Suppose each user issues x queries once and d

queries twice (total of x+2d queries)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once
§ What portion of pairs of duplicates?
§ Of d “duplicates” how many appear exactly once?
§ What is the sample-based answer?

14

¡ Simple question: What fraction of queries by an
average search engine user are duplicates?
§ Suppose each user issues x queries once and d queries

twice (total of x+2d queries)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once
§ But only d/100 pairs of duplicates

§ d/100 = 1/10 · 1/10 · d
§ Of d “duplicates” 18d/100 appear exactly once

§ 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d

§ So the sample-based answer is
!
"##

$
"#%

!
"##%

"&!
"##

= 𝒅
𝟏𝟎𝒙%𝟏𝟗𝒅

§ What should we do?
15

Solution:
¡ Pick 1/10th of users and take all their

searches in the sample

¡ Use a hash function that hashes the
user name or user id uniformly into 10
buckets

16

¡ Stream of tuples with keys:
§ Key is some subset of each tuple’s components

§ e.g., tuple is (user, search, time); key is user

§ Choice of key depends on application

¡ To get a sample of a/b fraction of the stream:
§ Hash each tuple’s key uniformly into b buckets
§ Pick the tuple if its hash value is at most a

17

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

As the stream grows, the sample is of
fixed size

¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose at time n we have seen n items
§ Each item is in the sample S with equal prob. s/n

19

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

¡ Algorithm

20

¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the

s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each

element seen so far with probability s/n
21

¡ We prove this by induction:
§ Assume that after n elements, the sample contains

each element seen so far with probability s/n
§ We need to show that after seeing element n+1

the sample maintains the property
§ Sample contains each element seen so far with

probability s/(n+1)
¡ Base case:
§ After we see n=s elements the sample S has the

desired property
§ Each out of n=s elements is in the sample with

probability s/s = 1

22

¡ Inductive hypothesis: After n elements, the
sample S contains each element seen so far with
prob. s/n

¡ Now element n+1 arrives
¡ Inductive step:

23

¡ Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

¡ Now element n+1 arrives
¡ Inductive step: For elements already in S,

probability that the algorithm keeps it in S is:

¡ So, at time n, tuples in S were there with prob. s/n
¡ Time n®n+1, tuple stayed in S with prob. n/(n+1)
¡ So prob. tuple is in S at time n+1 = 𝒔

𝒏
⋅ 𝒏
𝒏%𝟏

= 𝒔
𝒏%𝟏

24

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

¡ A useful model of stream processing is that
queries are about a window of length N –
the N most recent elements received

¡ Interesting case: N is so large that the data
cannot be stored in memory, or even on disk
§ Or, there are so many streams that windows

for all cannot be stored
¡ Amazon example:

§ For every product X we keep 0/1 stream of whether
that product was sold in the n-th transaction

§ We want to answer queries, how many times have we
sold X in the last k sales

26

¡ Sliding window on a single stream:

27

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

¡ Sliding window on a single stream:

28

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

¡ Sliding window on a single stream:

29

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

¡ Sliding window on a single stream:

30

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

31

¡ Problem:
§ Given a stream of 0s and 1s
§ Be prepared to answer queries of the form

How many 1s are in the last k bits? where k≤ N

¡ Obvious solution:
Store the most recent N bits
§ When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past Future

Suppose N=6

¡ You can not get an exact answer without
storing the entire window

¡ Real Problem:
What if we cannot afford to store N bits?
§ E.g., we’re processing 1 billion streams and

N = 1 billion

¡ But we are happy with an approximate
answer

32

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past Future

¡ Q: How many 1s are in the last N bits?
¡ A simple solution that does not really solve

our problem: Uniformity assumption

¡ Maintain 2 counters:
§ S: number of 1s from the beginning of the stream
§ Z: number of 0s from the beginning of the stream

¡ How many 1s are in the last N bits? 𝑵 1 𝑺
𝑺%𝒁

¡ But, what if stream is non-uniform?
§ What if distribution changes over time?

33

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

¡ DGIM solution that does not assume
uniformity

¡ We store 𝑶(log𝟐𝑵) bits per stream

¡ Solution gives approximate answer,
never off by more than 50%
§ Error factor can be reduced to any fraction > 0,

with more complicated algorithm and
proportionally more stored bits

34

[Datar, Gionis, Indyk, Motwani]

¡ Solution that doesn’t (quite) work:
§ Summarize exponentially increasing regions

of the stream, looking backward
§ Drop small regions if they begin at the same point

as a larger region

35

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

?

01
12

23
4

106

We can reconstruct the count of the last N bits, except we
are not sure how many of the last 6 1s are included in the N

Window of
width 16
has 6 1s

¡ Stores only O(log2N) bits
§ 𝑶(log𝑵) counts of log𝟐𝑵 bits each

¡ Easy update as more bits enter

¡ Error in count no greater than the number
of 1s in the “unknown” area

36

37

¡ As long as the 1s are fairly evenly distributed,
the error due to the unknown region is small
– no more than 50%

¡ But it could be that all the 1s are in the
unknown area at the end

¡ In that case, the error is unbounded!

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
01

12
23

4
106

N

?

¡ Idea: Instead of summarizing fixed-length
blocks, summarize blocks with specific
number of 1s:
§ Let the block sizes (number of 1s) increase

exponentially

¡ When there are few 1s in the window, block
sizes stay small, so errors are small

38

1001010110001011010101010101011010101010101110101010111010100010110010
N

[Datar, Gionis, Indyk, Motwani]

39

¡ Each bit in the stream has a timestamp,
starting 1, 2, …

¡ Record timestamps modulo N (the window
size), so we can represent any relevant
timestamp in 𝑶(𝒍𝒐𝒈𝟐𝑵) bits

¡ A bucket in the DGIM method is a record
consisting of:
§ (A) The timestamp of its end [O(log N) bits]
§ (B) The number of 1s between its beginning and

end [O(log log N) bits]

¡ Constraint on buckets:
Number of 1s must be a power of 2

§ That explains the O(log log N) in (B) above

40

1001010110001011010101010101011010101010101110101010111010100010110010
N

¡ Either one or two buckets with the same
power-of-2 number of 1s

¡ Buckets do not overlap in timestamps

¡ Buckets are sorted by size
§ Earlier buckets are not smaller than later buckets

¡ Buckets disappear when their
end-time is > N time units in the past

41

42

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

¡ When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to N
time units before the current time

¡ 2 cases: Current bit is 0 or 1

¡ If the current bit is 0:
no other changes are needed

43

¡ If the current bit is 1:
§ (1) Create a new bucket of size 1, for just this bit
§ End timestamp = current time

§ (2) If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2

§ (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

§ (4) And so on …

44

45

1001010110001011010101010101011010101010101110101010111010100010110010
Current state of the stream:

46

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

Current state of the stream:

Bit of value 1 arrives

47

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

48

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

49

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

50

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

51

¡ To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

¡ Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

52

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

¡ Why is error 50%? Let’s prove it!
¡ Suppose the last bucket has size 2r

¡ Then by assuming 2r-1 (i.e., half) of its 1s are
still within the window, we make an error of
at most 2r-1

¡ Since there is at least one bucket of each of
the sizes less than 2r, the true sum is at least
1 + 2 + 4 + .. + 2r-1 = 2r -1

¡ Thus, error at most 50%

53

111111110000000011101010101011010101010101110101010111010100010110010
N

At least 16 1s

¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Counting the number of 1s in the last N
elements
§ Exponentially increasing windows
§ Extensions:

§ Number of 1s in any last k (k < N) elements
§ Sums of integers in the last N elements

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 57

