
Top-k Set Search using MinHash Locality Sensitive Hashing:

Given a set Q (the query) and a collection of L={C1, …, Cn}, find a sub-collection w of size k distinct
sets such that:

Jaccard(Q,C) > 0, C ∈ L and
Jaccard(Q,C), C ∈ w Jaccard(Q,C)>= Jaccard(Q,X), X ∉ w, X ∈ L

Note that ties are broken arbitrarily so that only k sets exist in the result.

The brute-force algorithm computes the Jaccard similarity of Q with every set in L, sorts the sets
based on similarity, and returns k sets with highest similarity values. This algorithm returns the
exact results. As we saw in the lecture, MinHash LSH provides a space- and time-efficient
technique for threshold-based set similarity search based on Jaccard. In this assignment you are
to implement an algorithm (in your programming language of choice) that adopts MinHash LSH
for top-k search. Recall MinHash LSH for threshold-based search returns approximate results.
That is, there will be False Positives (FPs) and False Negatives (FNs). The FNs impact the precision
of the algorithm, since some correct results are not returned by LSH as candidates and will not
be in the final result set. The FPs impact the efficiency of the algorithm, since the algorithm needs
to verify the exact Jaccard similarity of candidate sets which counts as the post-processing cost.
Your algorithm for top-k search will likely have such considerations. In this assignment, we
explore the trade-off between precision and efficiency for top-k search using MinHash LSH.

Data Set:
You may find the curated set collection here: TBA
set in this collection corresponds to a column in the crawled data, from web and open data, and
is created by extracting unique values from the column.
We also provide you with a set of queries to experiment with. The query set is divided into five
groups. Sets in each group have cardinalities within a pre-determined interval. For example, all
sets in the first group have cardinalities in [10,250) and the sets in the second group have
cardinalities in [250,500), and so on. The query set can be found here: TBA

Comparison to Baseline:
Compare your algorithm with the brute-force algorithm in terms of precision and efficiency.
Precision evaluation: Plot the average precision of your algorithm for each query interval. We use
the standard definition of precision based on TPs (True Positives), TNs (True Negatives), FPs (False
Positives), FNs (False Negatives).

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Report your observations.
Efficiency evaluation: Plot the average query time of your algorithm as well as the baseline for
each query interval.

We suggest you follow these steps
Sketching

• Create n=128 hash functions that will be used for generating minhash values

• Implement a function that takes as input a set and returns the minhash signature of the
set using the pre-defined hash function. Note you should use the same set of hash
functions for all sets.

o Save an array of the minhash signature of all sets on disk. Alternatively, you could
use in-memory data structures, however, storing on disk saves you some time
every time you need to test your code.

Indexing

• Choose reasonable values for parameters b and r. For example, b=8 and r=16.

• Create another set of hash functions for building an LSH index. You can implement an LSH
index as r hash maps.

• Hash bands of each signature into buckets. Each signature is inserted into a bucket with
its ID.

Querying

• Create the signature of a query set using the signature creation function implemented
above.

• Hash bands of the query signature into LSH buckets and retrieve the sets that are in the
hit buckets. These are candidates and include false positives.

• Evaluate the Jaccard of candidate sets and the query using their signatures.

• This information can be used for evaluating the precision of LSH on this specific data set
with the chosen parameters.

