
Randomized Algorithms 



Does the Universe Have True Randomness?

• Even if it does not, we can still model our uncertainty about 
things using probability. 

• Randomness is an essential tool in modelling and analyzing 
nature. 

• It plays a key role in computer science. 

• Speeding up computation: statistics via sampling

• Cryptography: a secret is only as good as the entropy/uncertainty 
in it.

• Machine Learning: data is generated by some probability 
distribution.



Randomness and Algorithms

• How can randomness come into the picture?

• Given some algorithms that solves a problem

• Input is chosen randomly

• Algorithm can make random choices



Randomness and Algorithms

For a fixed input (e.g. x = 3)
the output can vary 
the running time can vary.

Randomness and algorithms

For a fixed input (e.g. x = 3)

- the output can vary

- the running time can vary

def f(x): 
     y = Bernoulli(0.5) 
     if(y == 0): 
          while(x > 0): 
               print(“What up?”) 
               x = x - 1 
     return x+y

An Example



Types of Randomized Algorithms

• Randomized algorithms always gamble with either correctness 
or running time. 

• Given an array with n elements (n even). A[1... n]. Half of the 
array contains 0s, the other half contains 1s.                        
Goal: Find an index that contains a 1.

Types of randomized algorithms

repeat: 
    k = RandInt(n) 
    if A[k] = 1, return k

Given an array with n elements  (n even).    A[1 … n].
Half of the array contains 0s, the other half contains 1s.
Goal:  Find an index that contains a 1.

repeat 300 times: 
    k = RandInt(n) 
    if A[k] = 1, return k 
return “Failed”

Doesn’t gamble with correctness
Gambles with run-time
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Randomness and Algorithms

Worst-case running time: O(1)
This is called Mont Carlo algorithm. 
Gambles with correctness not time.

Types of randomized algorithms

repeat: 
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Doesn’t gamble with run-time

Pr[Failure] =
1

2300



Randomness and Algorithms

Worst-case running time: cannot bound
Expected running time: O(1)

This is called Las Vegas algorithm. 
Gambles with time not correctness.

Pr[Failure] = 0

Types of randomized algorithms

repeat: 
    k = RandInt(n) 
    if A[k] = 1, return k

Given an array with n elements  (n even).    A[1 … n].
Half of the array contains 0s, the other half contains 1s.
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Types of Randomized Algorithms

• Given an array with n elements (n even). A[1 ... n]. Half of the 
array contains 0s, the other half contains 1s.                        
Goal: Find an index that contains a 1.

Given an array with n elements  (n even).    A[1 … n].
Half of the array contains 0s, the other half contains 1s.
Goal:  Find an index that contains a 1.

Deterministic

Monte Carlo

Las Vegas

Correctness Run-time

always

always

w.h.p.

w.h.p. = with high probability

⌦(n)

O(1)

O(1) w.h.p.w/ high prob

w/ high prob



Mont Carlo Algorithm

• Let                        be a computational problem. 

• Suppose A is a randomized algorithm such that

• Then we say A is a T(n)-time Monte Carlo algorithm for f with  
probability of error.

• Example: Min Cut

f : Σ* → Σ*

∀x ∈ Σ*, Pr[A(x) ≠ f(x)] ≤ ϵ

∀x ∈ Σ*,# steps A(x) takes is ≤ T( |x | )

ϵ



Las Vegas Algorithm

• Let                        be a computational problem. 

• Suppose A is a randomized algorithm such that

• Then we say A is a T(n)-time  Las Vegas algorithm for f. 

f : Σ* → Σ*

∀x ∈ Σ*, A(x) = f(x)

∀x ∈ Σ*, 𝔼[# steps A(x) takes] ≤ T( |x | )



Quiz

• How can we make a randomized sorting algorithm based on quick 
sort?  



Quick Sort

• On input 

• If n=1, return S

• Pick uniformly at random a “pivot”

• Compare       to all other x’s 

• Let  

• Recursively sort      and 

S = (x1, . . . , xn)

xm

xm

S1 = {xi : xi < xm}, S2 = {xi : xi > xm}

S1 S2



Quick Sort

• This is a Las Vegas algorithm

• Always gives the correct answer

• Running time can vary depending on our luck

• The expected run time is ≤ 2n ln n = O(n log n)



Coupon Collector Problem

• Story:  “Coupon collecting” is the activity of buying cereal-
packets, each of which will have a coupon inside. There are n 
different types of “coupon” and the goal is to collect one copy 
of each, then stop buying. 

• How many packets do we (expect to) need to buy? 

• Assumptions: 

• Items are randomly and identically distributed in packets (one 
card per packet). I.e. when buying a box the probability of any 
particular card being inside is 1/n. 



How to Analyze CC Problem?

• Could we evaluate expected number of purchases to get card i 
(Yi) and sum them? 



CC Analysis

• Let X be a random variable defined to be the number of trials 
required to collect at least one of each type of coupon.

• Let C1, C2, …, CX be the sequence of trials where   

• Call Ci a success if the coupon Ci was not drawn in any of the 
first i-1 selections. Clearly C1 and CX are always successes.

Ci ∈ {1,…, n}



CC Analysis

• We divide the sequence into epochs, where epoch i begins with 
the trial following the ith success and ends with the trial on 
which we obtain the (i+1)st success. 

• Define the random variable Xi, for i=0, …,n-1, to be the number 
of trials in the ith epoch, so that

• Let pi denote the probability of success on any trial of the ith 
epoch (the probability of drawing one of the n-i remaining 
coupon types 

pi =
n − i

n

X =
n−1

∑
i=0

Xi



Reminder: Geometric Distribution 

• The probability distribution of the number X of Bernoulli trials 
needed to get one success, supported on the set {1,2,…}.

• When the probability of success is p, the expected value for the 
number of independent trials to get the first success, and the 
variance are:

Var[X ] =
1 − p

p2
𝔼[X ] =

1
p



CC Analysis

• Xi is geometrically distributed with parameter pi 

• The expected value of Xi is     and its variance is  

• Recall 

• By linearity of expectation we have

• The nth Harmonic number Hn is asymptotically equal to    
              , implying that

1 − pi

p2
i

1
pi

X =
n−1

∑
i=0

Xi

𝔼[X ] =
n−1

∑
i=0

𝔼[Xi] =
n−1

∑
i=0

n
n − i

= n
n

∑
i=1

1
i

= nHn

ln(n) + Θ(1)

𝔼[X] = nln(n) + O(n)



Reminder: Harmonic Sum

• A good approximation is H(n) ≈ ln(n) +γ where γ ≈ 0.58 
(Euler-Mascheroni constant).

Hn = 1 +
1
2

+ … +
1
n

≈ ∫
n

1

1
x

dx = ln(n)



CC Analysis

• Since the Xi's are independent, we can determine the variance 
of X as 

σ2
X =

n−1

∑
i=0

σ2
Xi

=
n−1

∑
i=0

ni
(n − i)2

=
n

∑
i=1

n(n − i)
i2

= n2
n

∑
i=1

1
i2

− nHn



Beyond this Analysis

• In analyzing the performance of a randomized algorithm, we 
often like to show that the behavior of the algorithm is good 
almost all the time. For example, it is more desirable to show 
that the running time is small with high probability, not just that 
it has a small expectation. 

• The next step (not covered here) is to derive sharper estimates 
of the typical value of X. More precisely, we would like to show 
that the value of X is unlikely to deviate far from its 
expectation, or is sharply concentrated around its expected value. 



Min-Cut Problem



Does the Universe Have True Randomness?

• Even if it does not, we can still model our uncertainty about 
things using probability. 

• Randomness is an essential tool in modelling and analyzing 
nature. 

• It plays a key role in computer science. 

• Speeding up computation: statistics via sampling

• Cryptography: a secret is only as good as the entropy/uncertainty 
in it.

• Machine Learning: data is generated by some probability 
distribution.



Min-Cut Problem

• Let G be a connected, undirected multi-graph with n vertices.  A 
cut in G is a set of edges whose removal results in G being 
broken into two or more components.  A min-cut is a cut of 
minimum cardinality. 



A Simple Algorithm for Min-Cut
• Repeat the following steps

• pick an edge uniformly at random                                                               
and merge the two vertices at its end-points. 

• Retain all edges between pairs of newly formed vertices. 

• Remove edges between vertices that are merged (contraction process).

• With each contraction, the number of vertices of G decreases by one.

• An edge contraction does not reduce the min-cut size in G. Why?

• Continue until only two vertices remain; at this point, the set of edges 
between these two vertices is a cut in G and is output as a candidate min-
cut. 

• Easier than the deterministic algorithms based on the network-flow.
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A Simple Algorithm for Min-Cut

• Does this algorithm always find a min-cut?

• Let k be the size of a min-cut C for graph G. 

• G has at least kn/2 edges. Why? 

• We will bound from below the probability that no edge of C is 
ever contracted during an execution of the algorithm, so that 
the edges surviving till the end are exactly the edges in C.



Analysis of Min-Cut Algorithm

•     : the event of not picking an edge of C at the ith step, for 

• What is the maximum probability that the edge randomly 
chosen in the first step is in C?

Oi
1 ≤ i ≤ (n − 2)



Analysis of Min-Cut Algorithm

•     : the event of not picking an edge of C at the ith step, for 

• Probability that the edge randomly chosen in the first step is in 
C is at most k/(nk/2) = 2/n, so that 

• If      occurs during the first step, during the second step there 
are at least k(n-1)/2 edges, so the probability of picking an edge 
in C is at most 2/(n-1), so that 

• At the ith step, the number of remaining vertices is n-i+1. The 
size of the min-cut is k, so the graph has at least k(n-i+1)/2 
edges. 

Oi
1 ≤ i ≤ (n − 2)

P(O1) ≥
2
n

O1

P(O2 |O1) ≥ (1 −
2

n − 1
)

P(Oi | ∩i−1
j=1 Oj) ≥ 1 − 2/(n − i + 1)



Review: Probability of (In)dependent Events

• Independent events

• Convenient way to compute the intersection probability of a 
collection of events that is not independent:

P(O1 ∩ O2) = P(O1) × P(O2)

P(O1 ∩ O2) = P(O1 |O2) × P(O2) = P(O2 |O1) × P(O1)

P(∩k
i=1Oi) = P(O1) × P(O2 |O1) × P(O3 |O1 ∩ O2) × … × P(Ok | ∩k−1

i=1 Oi)



Analysis of Min Cut Algorithm
• The probability of no edge of C is ever picked

• The probability of discovering a particular min-cut is larger than 

• The algorithm may err in declaring the cut it outputs to be a min-cut.

• Suppose we were to repeat the above algorithm     times, making 
independent random choices each time. The probability that a min-cut is 
not found in any of the attempts

• Further executions will make the failure probability arbitrarily small but 
increases the running time. 

P(∩n−2
j=1 Oi) ≥ Πn−2

i=1 (1 −
2

n − i + 1 ) =
2

n(n − 1)
2
n2

n2

2

(1 −
2
n2 )

n2
2 < 1/e



Analysis of Min-Cut Algorithm

• We were able to bound the probability of an incorrect solution.

• Monte Carlo algorithm: if the algorithm is run repeatedly with 
independent random choices each time, the failure probability 
can be made arbitrarily small, at the expense of running time. 



Stable Marriage Problem



Does the Universe Have True Randomness?
• Consider a society in which there are n men (A,B,C, ...) and n women 

(a,b,c, …).  

• A monogamous, heterosexual marriage M is a 1-1 correspondence 
between men and women.

• Each person has a preference list organized in a decreasing order of 
desirability. 

• A marriage is said to be unstable if there exist two married couples X-x 
and Y-y such that X desires y more than x, and y desires X more than Y.

• The pair X-y is said to be dissatisfied under this marriage.

• A marriage M in which there are no dissatisfied couples is called a stable 
marriage. 



Stable Marriage: Example
• Consider the following preference lists.

• A:abcd B:bacd C:adcb D:dcab 

• a:ABCD b:DCBA c:ABCD d:CDAB 

• Is the marriage M given by A-a, B-b, C-c, and D-d stable?



Stable Marriage: Example
• Consider the following preference lists.

• A:abcd B:bacd C:adcb D:dcab 

• a:ABCD b:DCBA c:ABCD d:CDAB 

• C-d is a dissatisfied couple, thus, M is unstable. However, if C 
and d marry each other, and c and D marry each other, we 
obtain the stable marriage A-a, B-b, C-d, D-e. 

• The stable marriage problem has applications matching medical 
graduates to residency positions in hospitals.



An Algorithm for Stable Marriage 
Problem

• It can be shown that for every choice of preference lists there 
exist at least one stable marriage. 



Proposal Algorithm
• Assume that the men are numbered in some arbitrary manner.

• The lowest numbered unmarried man X proposes to the most 
desirable woman on his list who has not already rejected him 
(aka x). 

• x will accept the proposal if she is currently unmarried, or if her 
current mate Y is less desirable to her than X. 

• Repeat; terminate when every person has been married. 

• Partial marriage at each stage. 

• Does this algorithm always terminates with a stable marriage? 
Why?



Proposal Algorithm
• The final marriage M is stable. 

• Let X-y be a dissatisfied pair, where in M they are paired as X-x 
and Y-y. Since X prefers y to x, he must have proposed to y 
before getting married to x. Since y either rejected X, or 
accepted him only to jilt him later,  Y must be more desirable to 
her than X. Therefore, y must prefer Y to X, contradicting the 
assumption that y is dissatisfied.



Average-case Analysis of 
• What is the maximum number of proposals between n men/

women?

• Tp : the average number of proposals made during the 
execution of the Proposal Algorithm. 

• How to analyze Tp?



Average-case Analysis of 
• What is the maximum number of proposals between n men/

women?

• Tp : the average number of proposals made during the 
execution of the Proposal Algorithm. 

• Extremely difficult to analyze

• The choice of the proposer at any step is conditioned by the 
history of the process. The choice of the woman at each step also 
depends on the past proposals of the current proposer. 



Principle of Deferred Decision
• The idea is to not assume that the entire set of random choices 

is made in advance. Rather, at each step of the process we 
consider only the random choices that must be revealed to the 
algorithm. 

• This principle can be used to simplify the average-case analysis 
of the Proposal Algorithm. 



Clock Solitaire
• In this game we start with a standard deck of 52 cards, randomly 

shuffled. 

• The pack is divided into 13 piles of 4 cards each. 

• Each pile is arbitrarily labeled with a distinct member of {A,2,3,…,J,Q,K}.

• On the first move we draw a card from the pile labeled K. 

• At each subsequent move, a card is drawn from the pile whose label is 
the face value of the card drawn at the previous move. 

• The game ends when an attempt is made to draw a card from an empty 
pile. 

• We win the game only if, on termination, all 52 cards have been drawn. 



Clock Solitaire: Prob of Winning
• What is the probability of winning the game? 



Clock Solitaire: Prob of Winning
• The game always terminates in an attempt to draw a card from 

the K pile 

• The last card drawn has to be a K, because there are 4 cards of 
each denomination, and except for the K pile, each pile initially 
has 4 cards.

• A naive view of the probability space: all possible ways of 
dealing out the cards. Each point in this space corresponds to 
some partition of the 52 cards into 13 distinct piles, with an 
ordering defined on the 4 cards in each pile. 

• At each move of the game we introduce a new source of 
dependency. 



Clock Solitaire: Prob of Winning
• The idea of the Principle of Deferred Decisions is to not assume that 

the entire set of random choices is made in advance. Rather, at each 
step of the process we fix only the random choices that must be 
revealed to the algorithm.

• At each draw any unseen card is equally likely to appear. Thus, the 
process of playing this game is equivalent to repeatedly drawing a card 
uniformly at random from a deck of 52 cards. 

• A winning game corresponds to the situation where the first 51 cards 
drawn in this fashion contain exactly 3 Kings. 

• The probability of the 52nd card drawn being a King is exactly 1/13. This 
is also the probability of winning the game. 

• Recall the game always terminates in an attempt to draw a card from the 
K pile. 



Proposal Algorithm: Average Case
• We do not assume that the men have chosen their (random) 

preference list in advance. 

• Suppose that men do not know their lists to start with. Each 
time a man makes a proposal, he chooses a woman uniformly at 
random from the set of all n women, including those to whom 
he has already proposed. (Amnesiac Algorithm — TA: the 
number of proposals)

• There are some wasted proposals in the Amnesiac Algorithm. 

• TA stochastically dominates Tp : for all m, Pr[TA > m]>=Pr[TP > 
m]. For an upper bound, analyze the distribution of TA. 



Proposal Algorithm: Average Case
• To analyze TA we need to only count the total number of 

proposals made. 

• Each proposal is independently made to one of the n women 
chosen uniformly at random. 

• The algorithm terminates with a stable marriage once all 
women have received at least one proposal each.

• Does this remind you of a problem we learned before?


