Multi-arm Bandits

Based on
Reinforcement Learning, Sutton and Barto, Chapter 2



You are the algorithm!

Action | — Reward is always 8

 value of action | is q«(1) =

Action 2 — 88% chance of 0, 12% chance of 100!

e value of action 2 is q+(2) =

Action 3 — Randomly between -10 and 35, equiprobable

| 3) —
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Action 4 — a third 0, a third 20, and a third from {8,9,..., |8}

q«(4) =



You are the algorithm! (banditl)

* Action | — Reward is always 8

* value of action | is q:(1) =8
 Action 2 — 88% chance of 0, 12% chance of 100!
* value of action 2 is q+«(2) = .88 x 0+ .12 x 100 = 12

* Action 3 — Randomly between -10 and 35, equiprobable

| ¢.(3) = 12.5

Q*l(g) 35

* Action 4 — a third 0, a third 20, and a third from {8,9,..., 18}
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The k-armed Bandit Problem

* On each of an infinite sequence of time steps, t=1, 2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is identically, independently distributed (i.i.d.):

g«(a) =E|Ri|As = a], Vae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)



The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (a) ~ ([« (a), Ya action-value estimates

* Define the greedy action at time t as

A} = argmax Q¢ (a)

« If Ay = A7 then you are exploiting
If A; # A; then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.



Action-Value Methods

* Methods that learn action-value estimates and nothing else

* For example, estimate action values as sample averages:

sum of rewards when a taken prior to ¢t Zf;% Ri-14.—4

Qt(a) =

number of times a taken prior to ¢ Zf;% 14,4

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim  Q:(a) = q«(a)

Ni(a)—o0

The number of times action a
has been taken by time ¢



¢-Greedy Action Selection

* In greedy action selection, you always exploit

e In e-greedy, you are usually greedy, but with probability € you

instead pick an action at random (possibly the greedy action
again)

* This is perhaps the simplest way to balance exploration and
exploitation



A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) <0

Repeat forever:
A . | argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability ¢
R + bandit(A)
N(A)+ N(A)+1
Q(A) + Q(A) + xzy [R — Q(A)]




The 10-armed Testbed
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¢-Greedy Methods on the 10-Armed Testbed
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Quiz

* In e-greedy action selection, for the case of two actions and € = 0.5,
what is the probability that the greedy action is selected?



Quiz

Based on these Figures, which method performs better in the long
run if the reward variance had been larger, say 10 instead of |?
Which one likely performs better if reward variance was 0?
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Learning Action Values

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

. Ri+Re+--+ Ry
B n—1

@n

How can we do this incrementally (without storing all the rewards)!?

Could store a running sum and count (and divide), or equivalently:

Quir = Qn+ R0~ Q)

This is a standard form for learning/update rules:

NewkEstimate < OldEstimate + StepSize [Target — OldEstimate



Derivation of Incremental Update
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Tracking a Non-stationary Problem

Suppose the true action values change slowly over time, then we say that the
problem is non-stationary

* Stationary: reward probabilities do not change over time.

In this case, sample averages are not a good idea. It makes sense to give more
weight to recent rewards than to long-past rewards.

Better is an “exponential, recency-weighted average:

Quit = Qu +a| R — Qu]

=(1-a)"Q1+ > o(l—a)" 'R,
1=1

where « is a constant step-size parameter, a € (0, 1]

There is bias due to ();that becomes smaller over time.

Initial reward values become an easy values to provide prior knowledge.



Optimistic Initial Values

* All methods so far depend on 1(a), i.e., they are biased.
So far we have used Q1(a) =0

 Suppose we initialize the action values optimistically (Q1(a) = 5),
e.g.,on the |0-armed testbed (with a = 0.1)
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Quiz

Initially, the optimistic method performs worse.Why?
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Upper Confidence Bound (UCB) action selection

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

* Select the action with the largest (estimated) upper bound: look
at potential of actions for actually being optimal.

. logt
Ay = argznax [Qt(a) +c N, () ]
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Gradient-Bandit Algorithms

» Let H;(a) be a learned preference for taking action a.The
larger the preference, the more often that action is taken,
but the preference has no interpretation in terms of reward.

th(a) .
Zlg—l eHt(b) - Wt(a)

Ht+1(a) = Ht(CL) + CM(Rt — Rt) (1a:At — 7Tt(a,)), VCL,

PI’{At = CZ} =

_ 1
R, = :ZL%Rz‘

* If the reward is higher than the baseline, then the probability
of taking a in the future is increased, and if the reward is
below baseline, then the probability is decreased. The non-

selected actions move in the opposite direction.



Gradient-Bandit Algorithms

 Let H;(a) be a learned preference for taking action a.The larger the
preference, the more often that action is taken, but the preference
has no interpretation in terms of reward.
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Contextual Bandit

 So far, no need to associate different actions with different
situations.

* find a single best action when stationary or track the best action as
it changes over time when the task is non-stationary.

* Contextual bandit: find a mapping from situations to the actions.

* There are several different k-armed bandit tasks, and on each step
you confront one of these chosen at random.



Summary Comparison of Bandit Algorithms
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