DISTRIBUTION TAILORING

MOTIVATION

- Distribution requirements on data sets
 - reducing model error (for feature slices)
 - showing adequate consideration of minority groups
- Sources of data
 - explicitly collected by the data scientist
 - secondary data, collected for some other purpose
- Can data from multiple sources be put together to build a data set with a desired distribution?
 - Data Distribution Tailoring (DT)

QUERY MODEL

- User's query: target schema and distribution requirements
- Target schema contains some sensitive attributes that identify the groups.
- A distribution requirement specified over some groups
 - Count requirements: group ratio + target size

Schema: movie_title, actor_name, gender, race, ...

Distbn Requirements: WM: 1K, NWF: 1K, ...

Data Model

- A collection of data sources
- Each source has the same schema as the user's query schema.
 - Each tuple of a source can be associated with a group.
- We assume a tuple-at-a-time access to a source.

COST MODEL

- Obtaining samples from different data sources is not for free.
- Samples are associated with a cost: monetary, computation, memory or network access.

DATA DISTRIBUTION TAILORING (DT)

• Given sources $L = \{D_1, ..., D_n\}$ with their costs $\{C_1, ..., C_n\}$, and count requirements $\{Q_1, ..., Q_m\}$ on groups $\{G_1, ..., G_m\}$, our goal is to query different sources in L, in a sequential manner, in order to collect samples that fulfill the count requirement, while the expected total query cost is minimized.

DT ALGORITHM

Input: data sources $L=\{D_1, \ldots, D_n\}$ and $\{C_1, \ldots, C_n\}$ counts $\{Q_1, ..., Q_m\}$ over $\{G_1, ..., G_m\}$; Output: *O*, the target data set 1: $O \leftarrow \{\}, \text{ cost } \leftarrow 0$ 2: while(Q_i>0) do $D_i, C_i \leftarrow \text{select_optimal_source}()$ 3: 4: $s \leftarrow Query(D)$ 5: $j \leftarrow Group(s)$ 6: if (s \notin O AND Q_i>0) then add s to O; 7: 8: $Q_i \leftarrow Q_i - 1$ $cost \leftarrow cost + C_i$ 9: 10: return O

VERSIONS OF DT

- Known source distributions
- Unknown source distributions

DT: KNOWN DISTRIBUTIONS

- Notations
 - $Q = {Q_1, \dots, Q_m}$: count requirements on m groups
 - C_i: cost of D_i
 - P_i^j : prob of collecting G_i from D_i
 - N_i: #tuples in data source D_i
 - N_i^j: #tuples in D_i that belong to G_j
 - F(Q): min expected cost of a target with counts Q
- How to compute F(Q)?
 - Think recursively. Consider the probability of obtaining a fresh and useful tuple. Include the case when a tuple is not useful.

KNOWN DT: COST FUNCTION

F(Q): min expected cost of a target with counts Q $F_j(Q) = F(Q_1, \dots, Q_j - 1, \dots, Q_m)$

KNOWN DT: COST FUNCTION

• Source selection strategy

$$min_{\forall D_i}(C_i + \sum_{j=1,Q_j>0}^m P_i^j F_j(Q) + (1 - \sum_{j=1,Q_j>0}^m P_i^j) F(Q)$$

- What kind of assumption do we make here on P_i^J ?
- Which algorithmic technique can we use to solve this optimization problem?

A DYNAMIC PROGRAMMING SOLUTION

cost

sources

cost of obtaining a tuple of G_1 from D_1 : 2/0.2=10 cost of obtaining a tuple of G_1 from D_2 : 3/0.4=7.5

groups

 $F(1,0) = \min(2/0.2, 3/0.4) = 7.5 \leftarrow D_2$ F(0,1) = min(2/0.8, 3/0.6) = 2.5 \leftarrow D_1 Query: G_1 : 1 and G_2 : 1 F(1,1): the cost of a target with G_1 : 1 and G_2 : 1

select D_1 : 2 + 0.2 F(0,1) + 0.8 F(1,0) select D_2 : 3 + 0.4 F(0,1) + 0.6 F(1,0)

 $F(1,1) = \min(2 + 0.2 F(0,1) + 0.8 F(1,0),$ 3 + 0.4 F(0,1) + 0.6 F(1,0)) = 8.4 \leftarrow D_1

DP COMPLEXITY

• What is the complexity of this DP algorithm?

DP COMPLEXITY

- Pseudo-polynomial time complexity $O(n \ m \ \prod_{i=1}^{m} Q_i)$
- Not practical for realistic settings

EQUI-COST BINARY DT

- Let's consider a common and simple setting
- Groups $\{G_1, G_2\}$ with counts $\{Q_1, Q_2\}$ and all source costs are equal.
- P_i^j : prob of collecting G_j from D_i
- What is the cost of getting a fresh tuple of group G_i from D_i ?
- What is the best source for group G_j ?

EQUI-COST BINARY DT

- Groups $\{G_1, G_2\}$ with counts $\{Q_1, Q_2\}$ and all source costs are equal.
- Cost of getting a fresh tuple of G_j from D_i (geometric distribution): • $\frac{N_i}{N_i^j - O_i^j}$, O_i^j : #seen tuples of G_j from D_i

• The best source for
$$G_j$$
: $D_{*j} = \underset{\forall D_i}{\operatorname{argmax}} \left(\frac{N_i^j - O_i^j}{N_i} \right)$

EQUI-COST BINARY DT

- Groups $\{G_1, G_2\}$ with counts $\{Q_1, Q_2\}$ and all source costs are equal.
- Cost of getting a fresh tuple of G_j from D_i (geometric distribution): • $\frac{N_i}{N_i^j - O_i^j}$, O_i^j : #seen tuples of G_j from D_i
- The best source for G_j : $D_{*j} = \underset{\forall D_i}{\operatorname{argmax}} \left(\frac{N_i^j O_i^j}{N_i} \right)$

Optimal Equi-Cost Binary

• Which source we should pick in each iteration?

OPTIMAL EQUI-COST BINARY

• Hint: we can find the best source for each group: D_{*1} and D_{*2}

$$D_{*1} = D_i \text{ and } P_{*1} = \frac{N_i^1 - O_i^1}{N_i}$$

 $D_{*2} = D_j \text{ and } P_{*2} = \frac{N_j^2 - O_j^2}{N_j}$

• Which incurs lower cost?

OPTIMAL EQUI-COST BINARY

• Find the best source for each group: D_{*1} and D_{*2}

$$D_{*1} = D_i \text{ and } P_{*1} = \frac{N_i^1 - O_i^1}{N_i}$$

 $D_{*2} = D_j \text{ and } P_{*2} = \frac{N_j^2 - O_j^2}{N_j}$

Theorem. Consider the DT problem under the availability of group distributions where there are two groups and the costs for querying data sources are equal. Let G_1 be the minority, i.e. $P_{*1} \leq P_{*2}$. Selecting D_{*1} to query at current iteration is optimal.

DT FOR OTHER SETTINGS

- General DT: non-binary case (m>2) with unequal source costs
 - approximation algorithm with cost upper bound analysis
- Unknown DT
 - An exploration-exploitation solution based on the Multi-Arm Bandit framework

Optimal Equi-Cost Binary

- Proof by contradiction
- Intuition: piggy-backing
 - while sampling from the minority group, we collect items of the majority group.

PROOF SKETCH

• Proof by contradiction

• Let $D_{*1} = D_i$. Suppose A_1 that select D_i is not optimal. Suppose the optimal algorithm A_2 selects $D_{i \neq j}$. We show that the expected cost of A_1 cannot be less than A_2 . Let $P' = \frac{N_j^1 - O_j^1}{N_j}$. Note $P' \leq P_{*1}$. $F_i(Q_1, Q_2) = P_{*1}F(Q_1 - 1, Q_2) + (1 - P_{*1})F(Q_1, Q_2 - 1)$ $F_j(Q_1, Q_2) = P'F(Q_1 - 1, Q_2) + (1 - P')F(Q_1, Q_2 - 1)$ $B = F_j(Q_1, Q_2) - F_i(Q_1, Q_2)$ $= (P_{*1} - P')(F(Q_1, Q_2 - 1) - F(Q_1 - 1, Q_2))$

PROOF SKETCH

 $F(Q_1-1, Q_2) = F(Q_1-1, Q_2-1) + F(0,1)$ $F(Q_1, Q_2-1) = F(Q_1-1, Q_2-1) + F(1,0)$

- Since G1 is the minority, F (0, 1) \leq F (1, 0). Therefore $B \geq 0$
- Since the expected cost of A_1 cannot be less that of A_2 , selecting $D_i = D_{*1}$ to query at iteration i is an optimal solution.

EQUI-COST BINARY DT ALGORITHM

Input: number of items from $Q = \{Q_1, Q_2\};$

data sources $L=\{D_1, \ldots, D_n\}$

Output: O, the target data set

 $1: O \leftarrow \{\}$

2: while(Q₁>0 AND Q₂>0) do

- 3: D \leftarrow source with max ratio of undiscovered G_1
- 4: D' \leftarrow source with max ratio of undiscovered G₂
- 5: $D'' \leftarrow$ source (D or D') with the minority group
- 6: $s \leftarrow Query(D'')$

...

GENERAL NON-BINARY DT

- Multiple groups $\{G_1, ..., G_m\}$ with count requirements $\{Q_1, ..., Q_m\}$ and source costs are not equal.
- Brainstorming for an algorithm for the general non-binary DT.

GENERAL NON-BINARY DT

- Multiple groups $\{G_1, ..., G_m\}$ with count requirements $\{Q_1, ..., Q_m\}$ and source costs are not equal.
- For group *G_i*, what is the most cost-effective data source?
- How can we use the cost-effective data sources to fulfill the count requirements?

GENERAL NON-BINARY DT

• For group G_{j} , the most cost-effective data source is $D_{*j} = \underset{\forall D_i}{\operatorname{argmax}} \frac{N_i^j}{N_i. C_i}$

GENERAL DT ALGORITHM

- Select the most cost-effective source for G_j (namely D_{*j}) and commit to it.
- Query the data source D_{*i} for group G_i
 - Maintain the tuples of other groups (piggybacking)
- Repeat until the target specified by the count description $[{\rm Q}_1,\ldots,{\rm Q}_m]$ is collected.

PROJECT 2: VARORIATIONS OF DT

- Given sources $L = \{D_1, ..., D_n\}$ with their costs $\{C_1, ..., C_n\}$, and count requirements $\{Q_1, ..., Q_m\}$ on groups $\{G_1, ..., G_m\}$, our goal is to query different sources in L, in a sequential manner, in order to collect samples that fulfill the count requirement, while the expected total query cost is minimized.
- Generalize the problem to
 - fixed > 1 number of samples at each iteration
 - arbitrary number of samples at each iteration
 - count requirements on multiple groups (e.g. 100 of gender=F and 100 of gender=M as well as 100 of race=W and 100 of race=NW)
 - overlapping sources